Contract Overview
Balance:
0 Ether
More Info
My Name Tag:
Not Available
Txn Hash |
Method
|
Block
|
From
|
To
|
Value | ||||
---|---|---|---|---|---|---|---|---|---|
0x937aa33875b1f84716523fa7bfb2ed7f7fda1d2d0b06a367ac8f1bb69bb0a773 | 0x60806040 | 8036571 | 511 days 15 hrs ago | 0x32b230795ab78ab51ea7b3f15a23a762aaecd3e0 | IN | Create: ClaimCalc | 0 Ether | 0.01810569 |
[ Download CSV Export ]
Contract Name:
ClaimCalc
Compiler Version
v0.7.4+commit.3f05b770
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.7.4; /** * @title Careful Math * @author DeFiPie * @notice Derived from OpenZeppelin's SafeMath library * https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol */ contract CarefulMath { /** * @dev Possible error codes that we can return */ enum MathError { NO_ERROR, DIVISION_BY_ZERO, INTEGER_OVERFLOW, INTEGER_UNDERFLOW } /** * @dev Multiplies two numbers, returns an error on overflow. */ function mulUInt(uint a, uint b) internal pure returns (MathError, uint) { if (a == 0) { return (MathError.NO_ERROR, 0); } uint c = a * b; if (c / a != b) { return (MathError.INTEGER_OVERFLOW, 0); } else { return (MathError.NO_ERROR, c); } } /** * @dev Integer division of two numbers, truncating the quotient. */ function divUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b == 0) { return (MathError.DIVISION_BY_ZERO, 0); } return (MathError.NO_ERROR, a / b); } /** * @dev Subtracts two numbers, returns an error on overflow (i.e. if subtrahend is greater than minuend). */ function subUInt(uint a, uint b) internal pure returns (MathError, uint) { if (b <= a) { return (MathError.NO_ERROR, a - b); } else { return (MathError.INTEGER_UNDERFLOW, 0); } } /** * @dev Adds two numbers, returns an error on overflow. */ function addUInt(uint a, uint b) internal pure returns (MathError, uint) { uint c = a + b; if (c >= a) { return (MathError.NO_ERROR, c); } else { return (MathError.INTEGER_OVERFLOW, 0); } } /** * @dev add a and b and then subtract c */ function addThenSubUInt(uint a, uint b, uint c) internal pure returns (MathError, uint) { (MathError err0, uint sum) = addUInt(a, b); if (err0 != MathError.NO_ERROR) { return (err0, 0); } return subUInt(sum, c); } }
pragma solidity ^0.7.4; import "./ErrorReporter.sol"; import "./Exponential.sol"; import "./PriceOracle.sol"; import "./ControllerInterface.sol"; import "./ControllerStorage.sol"; import "./PTokenInterfaces.sol"; import "./EIP20Interface.sol"; import "./Unitroller.sol"; /** * @title DeFiPie's Controller Contract * @author DeFiPie */ contract Controller is ControllerStorage, ControllerInterface, ControllerErrorReporter, Exponential { /// @notice Emitted when an admin supports a market event MarketListed(address pToken); /// @notice Emitted when an account enters a market event MarketEntered(address pToken, address account); /// @notice Emitted when an account exits a market event MarketExited(address pToken, address account); /// @notice Emitted when close factor is changed by admin event NewCloseFactor(uint oldCloseFactorMantissa, uint newCloseFactorMantissa); /// @notice Emitted when a collateral factor is changed by admin event NewCollateralFactor(address pToken, uint oldCollateralFactorMantissa, uint newCollateralFactorMantissa); /// @notice Emitted when liquidation incentive is changed by admin event NewLiquidationIncentive(uint oldLiquidationIncentiveMantissa, uint newLiquidationIncentiveMantissa); /// @notice Emitted when maxAssets is changed by admin event NewMaxAssets(uint oldMaxAssets, uint newMaxAssets); /// @notice Emitted when price oracle is changed event NewPriceOracle(PriceOracle oldPriceOracle, PriceOracle newPriceOracle); /// @notice Emitted when pause guardian is changed event NewPauseGuardian(address oldPauseGuardian, address newPauseGuardian); /// @notice Emitted when an action is paused globally event ActionPaused(string action, bool pauseState); /// @notice Emitted when an action is paused on a market event ActionPaused(address pToken, string action, bool pauseState); /// @notice Emitted when market pieed status is changed event MarketPied(address pToken, bool isPied); /// @notice Emitted when PIE rate is changed event NewPieRate(uint oldPieRate, uint newPieRate); /// @notice Emitted when a new PIE speed is calculated for a market event PieSpeedUpdated(address indexed pToken, uint newSpeed); /// @notice Emitted when PIE is distributed to a supplier event DistributedSupplierPie(address indexed pToken, address indexed supplier, uint pieDelta, uint pieSupplyIndex); /// @notice Emitted when PIE is distributed to a borrower event DistributedBorrowerPie(address indexed pToken, address indexed borrower, uint pieDelta, uint pieBorrowIndex); /// @notice The threshold above which the flywheel transfers PIE, in wei uint public constant pieClaimThreshold = 0.001e18; /// @notice The initial PIE index for a market uint224 public constant pieInitialIndex = 1e36; // closeFactorMantissa must be strictly greater than this value uint internal constant closeFactorMinMantissa = 0.05e18; // 0.05 // closeFactorMantissa must not exceed this value uint internal constant closeFactorMaxMantissa = 0.9e18; // 0.9 // No collateralFactorMantissa may exceed this value uint internal constant collateralFactorMaxMantissa = 0.9e18; // 0.9 // liquidationIncentiveMantissa must be no less than this value uint internal constant liquidationIncentiveMinMantissa = 1.0e18; // 1.0 // liquidationIncentiveMantissa must be no greater than this value uint internal constant liquidationIncentiveMaxMantissa = 1.5e18; // 1.5 constructor() { admin = msg.sender; } /*** Assets You Are In ***/ /** * @notice Returns the assets an account has entered * @param account The address of the account to pull assets for * @return A dynamic list with the assets the account has entered */ function getAssetsIn(address account) external view returns (address[] memory) { address[] memory assetsIn = accountAssets[account]; return assetsIn; } /** * @notice Returns whether the given account is entered in the given asset * @param account The address of the account to check * @param pToken The pToken to check * @return True if the account is in the asset, otherwise false. */ function checkMembership(address account, address pToken) external view returns (bool) { return markets[pToken].accountMembership[account]; } /** * @notice Add assets to be included in account liquidity calculation * @param pTokens The list of addresses of the pToken markets to be enabled * @return Success indicator for whether each corresponding market was entered */ function enterMarkets(address[] memory pTokens) public override returns (uint[] memory) { uint len = pTokens.length; uint[] memory results = new uint[](len); for (uint i = 0; i < len; i++) { address pToken = pTokens[i]; results[i] = uint(addToMarketInternal(pToken, msg.sender)); } return results; } /** * @notice Add the market to the borrower's "assets in" for liquidity calculations * @param pToken The market to enter * @param borrower The address of the account to modify * @return Success indicator for whether the market was entered */ function addToMarketInternal(address pToken, address borrower) internal returns (Error) { Market storage marketToJoin = markets[pToken]; if (!marketToJoin.isListed) { // market is not listed, cannot join return Error.MARKET_NOT_LISTED; } if (marketToJoin.accountMembership[borrower] == true) { // already joined return Error.NO_ERROR; } if (accountAssets[borrower].length >= maxAssets) { // no space, cannot join return Error.TOO_MANY_ASSETS; } // survived the gauntlet, add to list // NOTE: we store these somewhat redundantly as a significant optimization // this avoids having to iterate through the list for the most common use cases // that is, only when we need to perform liquidity checks // and not whenever we want to check if an account is in a particular market marketToJoin.accountMembership[borrower] = true; accountAssets[borrower].push(pToken); emit MarketEntered(pToken, borrower); return Error.NO_ERROR; } /** * @notice Removes asset from sender's account liquidity calculation * @dev Sender must not have an outstanding borrow balance in the asset, * or be providing neccessary collateral for an outstanding borrow. * @param pTokenAddress The address of the asset to be removed * @return Whether or not the account successfully exited the market */ function exitMarket(address pTokenAddress) external override returns (uint) { address pToken = pTokenAddress; /* Get sender tokensHeld and amountOwed underlying from the pToken */ (uint oErr, uint tokensHeld, uint amountOwed, ) = PTokenInterface(pToken).getAccountSnapshot(msg.sender); require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code /* Fail if the sender has a borrow balance */ if (amountOwed != 0) { return fail(Error.NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED); } /* Fail if the sender is not permitted to redeem all of their tokens */ uint allowed = redeemAllowedInternal(pTokenAddress, msg.sender, tokensHeld); if (allowed != 0) { return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed); } Market storage marketToExit = markets[pToken]; /* Return true if the sender is not already ‘in’ the market */ if (!marketToExit.accountMembership[msg.sender]) { return uint(Error.NO_ERROR); } /* Set pToken account membership to false */ delete marketToExit.accountMembership[msg.sender]; /* Delete pToken from the account’s list of assets */ // load into memory for faster iteration address[] memory userAssetList = accountAssets[msg.sender]; uint len = userAssetList.length; uint assetIndex = len; for (uint i = 0; i < len; i++) { if (userAssetList[i] == pToken) { assetIndex = i; break; } } // We *must* have found the asset in the list or our redundant data structure is broken assert(assetIndex < len); // copy last item in list to location of item to be removed, reduce length by 1 address[] storage storedList = accountAssets[msg.sender]; storedList[assetIndex] = storedList[storedList.length - 1]; storedList.pop(); //storedList.length--; emit MarketExited(pToken, msg.sender); return uint(Error.NO_ERROR); } /*** Policy Hooks ***/ /** * @notice Checks if the account should be allowed to mint tokens in the given market * @param pToken The market to verify the mint against * @param minter The account which would get the minted tokens * @param mintAmount The amount of underlying being supplied to the market in exchange for tokens * @return 0 if the mint is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol) */ function mintAllowed(address pToken, address minter, uint mintAmount) external override returns (uint) { // Pausing is a very serious situation - we revert to sound the alarms require(!mintGuardianPaused[pToken], "mint is paused"); // Shh - currently unused minter; mintAmount; if (!markets[pToken].isListed) { return uint(Error.MARKET_NOT_LISTED); } // Keep the flywheel moving updatePieSupplyIndex(pToken); distributeSupplierPie(pToken, minter, false); return uint(Error.NO_ERROR); } /** * @notice Checks if the account should be allowed to redeem tokens in the given market * @param pToken The market to verify the redeem against * @param redeemer The account which would redeem the tokens * @param redeemTokens The number of pTokens to exchange for the underlying asset in the market * @return 0 if the redeem is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol) */ function redeemAllowed(address pToken, address redeemer, uint redeemTokens) external override returns (uint) { uint allowed = redeemAllowedInternal(pToken, redeemer, redeemTokens); if (allowed != uint(Error.NO_ERROR)) { return allowed; } // Keep the flywheel moving updatePieSupplyIndex(pToken); distributeSupplierPie(pToken, redeemer, false); return uint(Error.NO_ERROR); } function redeemAllowedInternal(address pToken, address redeemer, uint redeemTokens) internal view returns (uint) { if (!markets[pToken].isListed) { return uint(Error.MARKET_NOT_LISTED); } /* If the redeemer is not 'in' the market, then we can bypass the liquidity check */ if (!markets[pToken].accountMembership[redeemer]) { return uint(Error.NO_ERROR); } /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */ (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer, pToken, redeemTokens, 0); if (err != Error.NO_ERROR) { return uint(err); } if (shortfall > 0) { return uint(Error.INSUFFICIENT_LIQUIDITY); } return uint(Error.NO_ERROR); } /** * @notice Validates redeem and reverts on rejection. May emit logs. * @param pToken Asset being redeemed * @param redeemer The address redeeming the tokens * @param redeemAmount The amount of the underlying asset being redeemed * @param redeemTokens The number of tokens being redeemed */ function redeemVerify(address pToken, address redeemer, uint redeemAmount, uint redeemTokens) external override { // Shh - currently unused // pToken; // redeemer; // Require tokens is zero or amount is also zero if (redeemTokens == 0 && redeemAmount > 0) { revert("redeemTokens zero"); } } /** * @notice Checks if the account should be allowed to borrow the underlying asset of the given market * @param pToken The market to verify the borrow against * @param borrower The account which would borrow the asset * @param borrowAmount The amount of underlying the account would borrow * @return 0 if the borrow is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol) */ function borrowAllowed(address pToken, address borrower, uint borrowAmount) external override returns (uint) { // Pausing is a very serious situation - we revert to sound the alarms require(!borrowGuardianPaused[pToken], "borrow is paused"); if (!markets[pToken].isListed) { return uint(Error.MARKET_NOT_LISTED); } Error err; if (!markets[pToken].accountMembership[borrower]) { // only pTokens may call borrowAllowed if borrower not in market require(msg.sender == pToken, "sender must be pToken"); // attempt to add borrower to the market err = addToMarketInternal(msg.sender, borrower); if (err != Error.NO_ERROR) { return uint(err); } // it should be impossible to break the important invariant assert(markets[pToken].accountMembership[borrower]); } if (oracle.getUnderlyingPrice(pToken) == 0) { return uint(Error.PRICE_ERROR); } uint shortfall; (err, , shortfall) = getHypotheticalAccountLiquidityInternal(borrower, pToken, 0, borrowAmount); if (err != Error.NO_ERROR) { return uint(err); } if (shortfall > 0) { return uint(Error.INSUFFICIENT_LIQUIDITY); } // Keep the flywheel moving Exp memory borrowIndex = Exp({mantissa: PTokenInterface(pToken).borrowIndex()}); updatePieBorrowIndex(pToken, borrowIndex); distributeBorrowerPie(pToken, borrower, borrowIndex, false); return uint(Error.NO_ERROR); } /** * @notice Checks if the account should be allowed to repay a borrow in the given market * @param pToken The market to verify the repay against * @param payer The account which would repay the asset * @param borrower The account which would borrowed the asset * @param repayAmount The amount of the underlying asset the account would repay * @return 0 if the repay is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol) */ function repayBorrowAllowed( address pToken, address payer, address borrower, uint repayAmount ) external override returns (uint) { // Shh - currently unused // payer; // borrower; // repayAmount; if (!markets[pToken].isListed) { return uint(Error.MARKET_NOT_LISTED); } // Keep the flywheel moving Exp memory borrowIndex = Exp({mantissa: PTokenInterface(pToken).borrowIndex()}); updatePieBorrowIndex(pToken, borrowIndex); distributeBorrowerPie(pToken, borrower, borrowIndex, false); return uint(Error.NO_ERROR); } /** * @notice Checks if the liquidation should be allowed to occur * @param pTokenBorrowed Asset which was borrowed by the borrower * @param pTokenCollateral Asset which was used as collateral and will be seized * @param liquidator The address repaying the borrow and seizing the collateral * @param borrower The address of the borrower * @param repayAmount The amount of underlying being repaid */ function liquidateBorrowAllowed( address pTokenBorrowed, address pTokenCollateral, address liquidator, address borrower, uint repayAmount ) external override returns (uint) { // Shh - currently unused liquidator; if (!markets[pTokenBorrowed].isListed || !markets[pTokenCollateral].isListed) { return uint(Error.MARKET_NOT_LISTED); } /* The borrower must have shortfall in order to be liquidatable */ (Error err, , uint shortfall) = getAccountLiquidityInternal(borrower); if (err != Error.NO_ERROR) { return uint(err); } if (shortfall == 0) { return uint(Error.INSUFFICIENT_SHORTFALL); } /* The liquidator may not repay more than what is allowed by the closeFactor */ uint borrowBalance = PTokenInterface(pTokenBorrowed).borrowBalanceStored(borrower); (MathError mathErr, uint maxClose) = mulScalarTruncate(Exp({mantissa: closeFactorMantissa}), borrowBalance); if (mathErr != MathError.NO_ERROR) { return uint(Error.MATH_ERROR); } if (repayAmount > maxClose) { return uint(Error.TOO_MUCH_REPAY); } return uint(Error.NO_ERROR); } /** * @notice Checks if the seizing of assets should be allowed to occur * @param pTokenCollateral Asset which was used as collateral and will be seized * @param pTokenBorrowed Asset which was borrowed by the borrower * @param liquidator The address repaying the borrow and seizing the collateral * @param borrower The address of the borrower * @param seizeTokens The number of collateral tokens to seize */ function seizeAllowed( address pTokenCollateral, address pTokenBorrowed, address liquidator, address borrower, uint seizeTokens ) external override returns (uint) { // Pausing is a very serious situation - we revert to sound the alarms require(!seizeGuardianPaused, "seize is paused"); // Shh - currently unused // seizeTokens; if (!markets[pTokenCollateral].isListed || !markets[pTokenBorrowed].isListed) { return uint(Error.MARKET_NOT_LISTED); } if (PTokenInterface(pTokenCollateral).controller() != PTokenInterface(pTokenBorrowed).controller()) { return uint(Error.CONTROLLER_MISMATCH); } // Keep the flywheel moving updatePieSupplyIndex(pTokenCollateral); distributeSupplierPie(pTokenCollateral, borrower, false); distributeSupplierPie(pTokenCollateral, liquidator, false); return uint(Error.NO_ERROR); } /** * @notice Checks if the account should be allowed to transfer tokens in the given market * @param pToken The market to verify the transfer against * @param src The account which sources the tokens * @param dst The account which receives the tokens * @param transferTokens The number of pTokens to transfer * @return 0 if the transfer is allowed, otherwise a semi-opaque error code (See ErrorReporter.sol) */ function transferAllowed( address pToken, address src, address dst, uint transferTokens ) external override returns (uint) { // Pausing is a very serious situation - we revert to sound the alarms require(!transferGuardianPaused, "transfer is paused"); // Currently the only consideration is whether or not // the src is allowed to redeem this many tokens uint allowed = redeemAllowedInternal(pToken, src, transferTokens); if (allowed != uint(Error.NO_ERROR)) { return allowed; } // Keep the flywheel moving updatePieSupplyIndex(pToken); distributeSupplierPie(pToken, src, false); distributeSupplierPie(pToken, dst, false); return uint(Error.NO_ERROR); } /*** Liquidity/Liquidation Calculations ***/ /** * @dev Local vars for avoiding stack-depth limits in calculating account liquidity. * Note that `pTokenBalance` is the number of pTokens the account owns in the market, * whereas `borrowBalance` is the amount of underlying that the account has borrowed. */ struct AccountLiquidityLocalVars { uint sumCollateral; uint sumBorrowPlusEffects; uint pTokenBalance; uint borrowBalance; uint exchangeRateMantissa; uint oraclePriceMantissa; Exp collateralFactor; Exp exchangeRate; Exp oraclePrice; Exp tokensToDenom; } /** * @notice Determine the current account liquidity wrt collateral requirements * @return (possible error code (semi-opaque), account liquidity in excess of collateral requirements, * account shortfall below collateral requirements) */ function getAccountLiquidity(address account) public view returns (uint, uint, uint) { (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, address(0), 0, 0); return (uint(err), liquidity, shortfall); } /** * @notice Determine the current account liquidity wrt collateral requirements * @return (possible error code, account liquidity in excess of collateral requirements, * account shortfall below collateral requirements) */ function getAccountLiquidityInternal(address account) internal view returns (Error, uint, uint) { return getHypotheticalAccountLiquidityInternal(account, address(0), 0, 0); } /** * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed * @param pTokenModify The market to hypothetically redeem/borrow in * @param account The account to determine liquidity for * @param redeemTokens The number of tokens to hypothetically redeem * @param borrowAmount The amount of underlying to hypothetically borrow * @return (possible error code (semi-opaque), hypothetical account liquidity in excess of collateral requirements, * hypothetical account shortfall below collateral requirements) */ function getHypotheticalAccountLiquidity( address account, address pTokenModify, uint redeemTokens, uint borrowAmount ) public view virtual returns (uint, uint, uint) { (Error err, uint liquidity, uint shortfall) = getHypotheticalAccountLiquidityInternal(account, pTokenModify, redeemTokens, borrowAmount); return (uint(err), liquidity, shortfall); } /** * @notice Determine what the account liquidity would be if the given amounts were redeemed/borrowed * @param pTokenModify The market to hypothetically redeem/borrow in * @param account The account to determine liquidity for * @param redeemTokens The number of tokens to hypothetically redeem * @param borrowAmount The amount of underlying to hypothetically borrow * @dev Note that we calculate the exchangeRateStored for each collateral pToken using stored data, * without calculating accumulated interest. * @return (possible error code, hypothetical account liquidity in excess of collateral requirements, * hypothetical account shortfall below collateral requirements) */ function getHypotheticalAccountLiquidityInternal( address account, address pTokenModify, uint redeemTokens, uint borrowAmount ) internal view returns (Error, uint, uint) { AccountLiquidityLocalVars memory vars; // Holds all our calculation results uint oErr; MathError mErr; // For each asset the account is in address[] memory assets = accountAssets[account]; for (uint i = 0; i < assets.length; i++) { address asset = assets[i]; // Read the balances and exchange rate from the pToken (oErr, vars.pTokenBalance, vars.borrowBalance, vars.exchangeRateMantissa) = PTokenInterface(asset).getAccountSnapshot(account); if (oErr != 0) { // semi-opaque error code, we assume NO_ERROR == 0 is invariant between upgrades return (Error.SNAPSHOT_ERROR, 0, 0); } vars.collateralFactor = Exp({mantissa: markets[address(asset)].collateralFactorMantissa}); vars.exchangeRate = Exp({mantissa: vars.exchangeRateMantissa}); // Get the normalized price of the asset vars.oraclePriceMantissa = oracle.getUnderlyingPrice(asset); if (vars.oraclePriceMantissa == 0) { return (Error.PRICE_ERROR, 0, 0); } vars.oraclePrice = Exp({mantissa: vars.oraclePriceMantissa}); // Pre-compute a conversion factor from tokens -> ether (normalized price value) (mErr, vars.tokensToDenom) = mulExp3(vars.collateralFactor, vars.exchangeRate, vars.oraclePrice); if (mErr != MathError.NO_ERROR) { return (Error.MATH_ERROR, 0, 0); } // sumCollateral += tokensToDenom * pTokenBalance (mErr, vars.sumCollateral) = mulScalarTruncateAddUInt(vars.tokensToDenom, vars.pTokenBalance, vars.sumCollateral); if (mErr != MathError.NO_ERROR) { return (Error.MATH_ERROR, 0, 0); } // sumBorrowPlusEffects += oraclePrice * borrowBalance (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, vars.borrowBalance, vars.sumBorrowPlusEffects); if (mErr != MathError.NO_ERROR) { return (Error.MATH_ERROR, 0, 0); } // Calculate effects of interacting with pTokenModify if (asset == pTokenModify) { // redeem effect // sumBorrowPlusEffects += tokensToDenom * redeemTokens (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.tokensToDenom, redeemTokens, vars.sumBorrowPlusEffects); if (mErr != MathError.NO_ERROR) { return (Error.MATH_ERROR, 0, 0); } // borrow effect // sumBorrowPlusEffects += oraclePrice * borrowAmount (mErr, vars.sumBorrowPlusEffects) = mulScalarTruncateAddUInt(vars.oraclePrice, borrowAmount, vars.sumBorrowPlusEffects); if (mErr != MathError.NO_ERROR) { return (Error.MATH_ERROR, 0, 0); } } } // These are safe, as the underflow condition is checked first if (vars.sumCollateral > vars.sumBorrowPlusEffects) { return (Error.NO_ERROR, vars.sumCollateral - vars.sumBorrowPlusEffects, 0); } else { return (Error.NO_ERROR, 0, vars.sumBorrowPlusEffects - vars.sumCollateral); } } /** * @notice Calculate number of tokens of collateral asset to seize given an underlying amount * @dev Used in liquidation (called in pToken.liquidateBorrowFresh) * @param pTokenBorrowed The address of the borrowed pToken * @param pTokenCollateral The address of the collateral pToken * @param actualRepayAmount The amount of pTokenBorrowed underlying to convert into pTokenCollateral tokens * @return (errorCode, number of pTokenCollateral tokens to be seized in a liquidation) */ function liquidateCalculateSeizeTokens( address pTokenBorrowed, address pTokenCollateral, uint actualRepayAmount ) external view override returns (uint, uint) { /* Read oracle prices for borrowed and collateral markets */ uint priceBorrowedMantissa = oracle.getUnderlyingPrice(pTokenBorrowed); uint priceCollateralMantissa = oracle.getUnderlyingPrice(pTokenCollateral); if (priceBorrowedMantissa == 0 || priceCollateralMantissa == 0) { return (uint(Error.PRICE_ERROR), 0); } /* * Get the exchange rate and calculate the number of collateral tokens to seize: * seizeAmount = actualRepayAmount * liquidationIncentive * priceBorrowed / priceCollateral * seizeTokens = seizeAmount / exchangeRate * = actualRepayAmount * (liquidationIncentive * priceBorrowed) / (priceCollateral * exchangeRate) */ uint exchangeRateMantissa = PTokenInterface(pTokenCollateral).exchangeRateStored(); // Note: reverts on error uint seizeTokens; Exp memory numerator; Exp memory denominator; Exp memory ratio; MathError mathErr; (mathErr, numerator) = mulExp(liquidationIncentiveMantissa, priceBorrowedMantissa); if (mathErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0); } (mathErr, denominator) = mulExp(priceCollateralMantissa, exchangeRateMantissa); if (mathErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0); } (mathErr, ratio) = divExp(numerator, denominator); if (mathErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0); } (mathErr, seizeTokens) = mulScalarTruncate(ratio, actualRepayAmount); if (mathErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0); } return (uint(Error.NO_ERROR), seizeTokens); } /*** Admin Functions ***/ /** * @notice Sets a new price oracle for the controller * @dev Admin function to set a new price oracle * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPriceOracle(PriceOracle newOracle) public returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PRICE_ORACLE_OWNER_CHECK); } // Track the old oracle for the controller PriceOracle oldOracle = oracle; // Set controller's oracle to newOracle oracle = newOracle; // Emit NewPriceOracle(oldOracle, newOracle) emit NewPriceOracle(oldOracle, newOracle); return uint(Error.NO_ERROR); } /** * @notice Sets a PIE address for the controller * @return uint 0=success */ function _setPieAddress(address pieAddress_) public returns (uint) { require(msg.sender == admin && pieAddress == address(0),"pie address may only be initialized once"); pieAddress = pieAddress_; return uint(Error.NO_ERROR); } /** * @notice Sets the closeFactor used when liquidating borrows * @dev Admin function to set closeFactor * @param newCloseFactorMantissa New close factor, scaled by 1e18 * @return uint 0=success, otherwise a failure. (See ErrorReporter for details) */ function _setCloseFactor(uint newCloseFactorMantissa) external returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_CLOSE_FACTOR_OWNER_CHECK); } Exp memory newCloseFactorExp = Exp({mantissa: newCloseFactorMantissa}); Exp memory lowLimit = Exp({mantissa: closeFactorMinMantissa}); if (lessThanOrEqualExp(newCloseFactorExp, lowLimit)) { return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION); } Exp memory highLimit = Exp({mantissa: closeFactorMaxMantissa}); if (lessThanExp(highLimit, newCloseFactorExp)) { return fail(Error.INVALID_CLOSE_FACTOR, FailureInfo.SET_CLOSE_FACTOR_VALIDATION); } uint oldCloseFactorMantissa = closeFactorMantissa; closeFactorMantissa = newCloseFactorMantissa; emit NewCloseFactor(oldCloseFactorMantissa, closeFactorMantissa); return uint(Error.NO_ERROR); } /** * @notice Sets the collateralFactor for a market * @dev Admin function to set per-market collateralFactor * @param pToken The market to set the factor on * @param newCollateralFactorMantissa The new collateral factor, scaled by 1e18 * @return uint 0=success, otherwise a failure. (See ErrorReporter for details) */ function _setCollateralFactor(address pToken, uint newCollateralFactorMantissa) external returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_COLLATERAL_FACTOR_OWNER_CHECK); } // Verify market is listed Market storage market = markets[pToken]; if (!market.isListed) { return fail(Error.MARKET_NOT_LISTED, FailureInfo.SET_COLLATERAL_FACTOR_NO_EXISTS); } Exp memory newCollateralFactorExp = Exp({mantissa: newCollateralFactorMantissa}); // Check collateral factor <= 0.9 Exp memory highLimit = Exp({mantissa: collateralFactorMaxMantissa}); if (lessThanExp(highLimit, newCollateralFactorExp)) { return fail(Error.INVALID_COLLATERAL_FACTOR, FailureInfo.SET_COLLATERAL_FACTOR_VALIDATION); } oracle.updateUnderlyingPrice(pToken); // If collateral factor != 0, fail if price == 0 if (newCollateralFactorMantissa != 0 && oracle.getUnderlyingPrice(pToken) == 0) { return fail(Error.PRICE_ERROR, FailureInfo.SET_COLLATERAL_FACTOR_WITHOUT_PRICE); } // Set market's collateral factor to new collateral factor, remember old value uint oldCollateralFactorMantissa = market.collateralFactorMantissa; market.collateralFactorMantissa = newCollateralFactorMantissa; // Emit event with asset, old collateral factor, and new collateral factor emit NewCollateralFactor(pToken, oldCollateralFactorMantissa, newCollateralFactorMantissa); return uint(Error.NO_ERROR); } /** * @notice Sets maxAssets which controls how many markets can be entered * @dev Admin function to set maxAssets * @param newMaxAssets New max assets * @return uint 0=success, otherwise a failure. (See ErrorReporter for details) */ function _setMaxAssets(uint newMaxAssets) external returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_MAX_ASSETS_OWNER_CHECK); } uint oldMaxAssets = maxAssets; maxAssets = newMaxAssets; emit NewMaxAssets(oldMaxAssets, newMaxAssets); return uint(Error.NO_ERROR); } /** * @notice Sets liquidationIncentive * @dev Admin function to set liquidationIncentive * @param newLiquidationIncentiveMantissa New liquidationIncentive scaled by 1e18 * @return uint 0=success, otherwise a failure. (See ErrorReporter for details) */ function _setLiquidationIncentive(uint newLiquidationIncentiveMantissa) external returns (uint) { // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_LIQUIDATION_INCENTIVE_OWNER_CHECK); } // Check de-scaled min <= newLiquidationIncentive <= max Exp memory newLiquidationIncentive = Exp({mantissa: newLiquidationIncentiveMantissa}); Exp memory minLiquidationIncentive = Exp({mantissa: liquidationIncentiveMinMantissa}); if (lessThanExp(newLiquidationIncentive, minLiquidationIncentive)) { return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION); } Exp memory maxLiquidationIncentive = Exp({mantissa: liquidationIncentiveMaxMantissa}); if (lessThanExp(maxLiquidationIncentive, newLiquidationIncentive)) { return fail(Error.INVALID_LIQUIDATION_INCENTIVE, FailureInfo.SET_LIQUIDATION_INCENTIVE_VALIDATION); } // Save current value for use in log uint oldLiquidationIncentiveMantissa = liquidationIncentiveMantissa; // Set liquidation incentive to new incentive liquidationIncentiveMantissa = newLiquidationIncentiveMantissa; // Emit event with old incentive, new incentive emit NewLiquidationIncentive(oldLiquidationIncentiveMantissa, newLiquidationIncentiveMantissa); return uint(Error.NO_ERROR); } /** * @notice Add the market to the markets mapping and set it as listed * @dev Admin function to set isListed and add support for the market * @param pToken The address of the market (token) to list * @return uint 0=success, otherwise a failure. (See enum Error for details) */ function _supportMarket(address pToken) external returns (uint) { if (msg.sender != admin && msg.sender != factory) { return fail(Error.UNAUTHORIZED, FailureInfo.SUPPORT_MARKET_OWNER_CHECK); } if (markets[pToken].isListed) { return fail(Error.MARKET_ALREADY_LISTED, FailureInfo.SUPPORT_MARKET_EXISTS); } PTokenInterface(pToken).isPToken(); // Sanity check to make sure its really a PToken _addMarketInternal(pToken); Market storage newMarket = markets[pToken]; newMarket.isListed = true; emit MarketListed(pToken); return uint(Error.NO_ERROR); } function _addMarketInternal(address pToken) internal { require(markets[pToken].isListed == false, "market already added"); allMarkets.push(pToken); } /** * @notice Admin function to change the Pause Guardian * @param newPauseGuardian The address of the new Pause Guardian * @return uint 0=success, otherwise a failure. (See enum Error for details) */ function _setPauseGuardian(address newPauseGuardian) public returns (uint) { if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PAUSE_GUARDIAN_OWNER_CHECK); } // Save current value for inclusion in log address oldPauseGuardian = pauseGuardian; // Store pauseGuardian with value newPauseGuardian pauseGuardian = newPauseGuardian; // Emit NewPauseGuardian(OldPauseGuardian, NewPauseGuardian) emit NewPauseGuardian(oldPauseGuardian, pauseGuardian); return uint(Error.NO_ERROR); } function _setMintPaused(address pToken, bool state) public returns (bool) { require(markets[pToken].isListed, "cannot pause a market that is not listed"); require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause"); require(msg.sender == admin || state == true, "only admin can unpause"); mintGuardianPaused[pToken] = state; emit ActionPaused(pToken, "Mint", state); return state; } function _setBorrowPaused(address pToken, bool state) public returns (bool) { require(markets[pToken].isListed, "cannot pause a market that is not listed"); require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause"); require(msg.sender == admin || state == true, "only admin can unpause"); borrowGuardianPaused[pToken] = state; emit ActionPaused(pToken, "Borrow", state); return state; } function _setTransferPaused(bool state) public returns (bool) { require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause"); require(msg.sender == admin || state == true, "only admin can unpause"); transferGuardianPaused = state; emit ActionPaused("Transfer", state); return state; } function _setSeizePaused(bool state) public returns (bool) { require(msg.sender == pauseGuardian || msg.sender == admin, "only pause guardian and admin can pause"); require(msg.sender == admin || state == true, "only admin can unpause"); seizeGuardianPaused = state; emit ActionPaused("Seize", state); return state; } function _setFactoryContract(address _factory) external returns (uint) { if (msg.sender != admin) { return uint(Error.UNAUTHORIZED); } factory = _factory; return uint(Error.NO_ERROR); } function _become(address payable unitroller) public { require(msg.sender == Unitroller(unitroller).admin(), "only unitroller admin can change brains"); require(Unitroller(unitroller)._acceptImplementation() == 0, "change not authorized"); } /*** Pie Distribution ***/ function refreshPieSpeeds() public { require(msg.sender == tx.origin, "only externally owned accounts may refresh speeds"); refreshPieSpeedsInternal(); } /** * @notice Recalculate and update PIE speeds for all PIE markets */ function refreshPieSpeedsInternal() internal { address[] memory allMarkets_ = allMarkets; for (uint i = 0; i < allMarkets_.length; i++) { address pToken = allMarkets_[i]; Exp memory borrowIndex = Exp({mantissa: PTokenInterface(pToken).borrowIndex()}); updatePieSupplyIndex(pToken); updatePieBorrowIndex(pToken, borrowIndex); } Exp memory totalUtility = Exp({mantissa: 0}); Exp[] memory utilities = new Exp[](allMarkets_.length); for (uint i = 0; i < allMarkets_.length; i++) { address pToken = allMarkets_[i]; if (markets[pToken].isPied) { oracle.updateUnderlyingPrice(pToken); Exp memory assetPrice = Exp({mantissa: oracle.getUnderlyingPrice(pToken)}); Exp memory interestPerBlock = mul_(Exp({mantissa: PTokenInterface(pToken).borrowRatePerBlock()}), PTokenInterface(pToken).totalBorrows()); Exp memory utility = mul_(interestPerBlock, assetPrice); utilities[i] = utility; totalUtility = add_(totalUtility, utility); } } for (uint i = 0; i < allMarkets_.length; i++) { address pToken = allMarkets[i]; uint newSpeed = totalUtility.mantissa > 0 ? mul_(pieRate, div_(utilities[i], totalUtility)) : 0; pieSpeeds[pToken] = newSpeed; emit PieSpeedUpdated(pToken, newSpeed); } } /** * @notice Accrue PIE to the market by updating the supply index * @param pToken The market whose supply index to update */ function updatePieSupplyIndex(address pToken) internal { PieMarketState storage supplyState = pieSupplyState[pToken]; uint supplySpeed = pieSpeeds[pToken]; uint blockNumber = getBlockNumber(); uint deltaBlocks = sub_(blockNumber, uint(supplyState.block)); if (deltaBlocks > 0 && supplySpeed > 0) { uint supplyTokens = PTokenInterface(pToken).totalSupply(); uint pieAccrued = mul_(deltaBlocks, supplySpeed); Double memory ratio = supplyTokens > 0 ? fraction(pieAccrued, supplyTokens) : Double({mantissa: 0}); Double memory index = add_(Double({mantissa: supplyState.index}), ratio); pieSupplyState[pToken] = PieMarketState({ index: safe224(index.mantissa, "new index exceeds 224 bits"), block: safe32(blockNumber, "block number exceeds 32 bits") }); } } /** * @notice Accrue PIE to the market by updating the borrow index * @param pToken The market whose borrow index to update */ function updatePieBorrowIndex(address pToken, Exp memory marketBorrowIndex) internal { PieMarketState storage borrowState = pieBorrowState[pToken]; uint borrowSpeed = pieSpeeds[pToken]; uint blockNumber = getBlockNumber(); uint deltaBlocks = sub_(blockNumber, uint(borrowState.block)); if (deltaBlocks > 0 && borrowSpeed > 0) { uint borrowAmount = div_(PTokenInterface(pToken).totalBorrows(), marketBorrowIndex); uint pieAccrued = mul_(deltaBlocks, borrowSpeed); Double memory ratio = borrowAmount > 0 ? fraction(pieAccrued, borrowAmount) : Double({mantissa: 0}); Double memory index = add_(Double({mantissa: borrowState.index}), ratio); pieBorrowState[pToken] = PieMarketState({ index: safe224(index.mantissa, "new index exceeds 224 bits"), block: safe32(blockNumber, "block number exceeds 32 bits") }); } } /** * @notice Calculate PIE accrued by a supplier and possibly transfer it to them * @param pToken The market in which the supplier is interacting * @param supplier The address of the supplier to distribute PIE to */ function distributeSupplierPie(address pToken, address supplier, bool distributeAll) internal { PieMarketState storage supplyState = pieSupplyState[pToken]; Double memory supplyIndex = Double({mantissa: supplyState.index}); Double memory supplierIndex = Double({mantissa: pieSupplierIndex[pToken][supplier]}); pieSupplierIndex[pToken][supplier] = supplyIndex.mantissa; if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) { supplierIndex.mantissa = pieInitialIndex; } Double memory deltaIndex = sub_(supplyIndex, supplierIndex); uint supplierTokens = PTokenInterface(pToken).balanceOf(supplier); uint supplierDelta = mul_(supplierTokens, deltaIndex); uint supplierAccrued = add_(pieAccrued[supplier], supplierDelta); pieAccrued[supplier] = transferPie(supplier, supplierAccrued, distributeAll ? 0 : pieClaimThreshold); emit DistributedSupplierPie(pToken, supplier, supplierDelta, supplyIndex.mantissa); } /** * @notice Calculate PIE accrued by a borrower and possibly transfer it to them * @dev Borrowers will not begin to accrue until after the first interaction with the protocol. * @param pToken The market in which the borrower is interacting * @param borrower The address of the borrower to distribute PIE to */ function distributeBorrowerPie( address pToken, address borrower, Exp memory marketBorrowIndex, bool distributeAll ) internal { PieMarketState storage borrowState = pieBorrowState[pToken]; Double memory borrowIndex = Double({mantissa: borrowState.index}); Double memory borrowerIndex = Double({mantissa: pieBorrowerIndex[pToken][borrower]}); pieBorrowerIndex[pToken][borrower] = borrowIndex.mantissa; if (borrowerIndex.mantissa > 0) { Double memory deltaIndex = sub_(borrowIndex, borrowerIndex); uint borrowerAmount = div_(PTokenInterface(pToken).borrowBalanceStored(borrower), marketBorrowIndex); uint borrowerDelta = mul_(borrowerAmount, deltaIndex); uint borrowerAccrued = add_(pieAccrued[borrower], borrowerDelta); pieAccrued[borrower] = transferPie(borrower, borrowerAccrued, distributeAll ? 0 : pieClaimThreshold); emit DistributedBorrowerPie(pToken, borrower, borrowerDelta, borrowIndex.mantissa); } } /** * @notice Transfer PIE to the user, if they are above the threshold * @dev Note: If there is not enough PIE, we do not perform the transfer all. * @param user The address of the user to transfer PIE to * @param userAccrued The amount of PIE to (possibly) transfer * @return The amount of PIE which was NOT transferred to the user */ function transferPie(address user, uint userAccrued, uint threshold) internal returns (uint) { if (userAccrued >= threshold && userAccrued > 0) { address pie = getPieAddress(); uint pieRemaining = EIP20Interface(pie).balanceOf(address(this)); if (userAccrued <= pieRemaining) { EIP20Interface(pie).transfer(user, userAccrued); return 0; } } return userAccrued; } /** * @notice Claim all the pie accrued by holder in all markets * @param holder The address to claim PIE for */ function claimPie(address holder) public { claimPie(holder, allMarkets); } /** * @notice Claim all the pie accrued by holder in the specified markets * @param holder The address to claim PIE for * @param pTokens The list of markets to claim PIE in */ function claimPie(address holder, address[] memory pTokens) public { address[] memory holders = new address[](1); holders[0] = holder; claimPie(holders, pTokens, true, true); } /** * @notice Claim all pie accrued by the holders * @param holders The addresses to claim PIE for * @param pTokens The list of markets to claim PIE in * @param borrowers Whether or not to claim PIE earned by borrowing * @param suppliers Whether or not to claim PIE earned by supplying */ function claimPie(address[] memory holders, address[] memory pTokens, bool borrowers, bool suppliers) public { for (uint i = 0; i < pTokens.length; i++) { address pToken = pTokens[i]; require(markets[pToken].isListed, "market must be listed"); if (borrowers == true) { Exp memory borrowIndex = Exp({mantissa: PTokenInterface(pToken).borrowIndex()}); updatePieBorrowIndex(pToken, borrowIndex); for (uint j = 0; j < holders.length; j++) { distributeBorrowerPie(pToken, holders[j], borrowIndex, true); } } if (suppliers == true) { updatePieSupplyIndex(pToken); for (uint j = 0; j < holders.length; j++) { distributeSupplierPie(pToken, holders[j], true); } } } } /*** Pie Distribution Admin ***/ /** * @notice Set the amount of PIE distributed per block * @param pieRate_ The amount of PIE wei per block to distribute */ function _setPieRate(uint pieRate_) public { require(msg.sender == admin, "only admin can change pie rate"); uint oldRate = pieRate; pieRate = pieRate_; emit NewPieRate(oldRate, pieRate_); refreshPieSpeedsInternal(); } function _addPieMarkets(address[] memory pTokens) public { require(msg.sender == admin, "only admin can add pie market"); for (uint i = 0; i < pTokens.length; i++) { _addPieMarketInternal(pTokens[i]); } refreshPieSpeedsInternal(); } function _addPieMarketInternal(address pToken) internal { Market storage market = markets[pToken]; require(market.isListed == true, "pie market is not listed"); require(market.isPied == false, "pie market already added"); market.isPied = true; emit MarketPied(pToken, true); if (pieSupplyState[pToken].index == 0) { pieSupplyState[pToken] = PieMarketState({ index: pieInitialIndex, block: safe32(getBlockNumber(), "block number exceeds 32 bits") }); } else { pieSupplyState[pToken].block = safe32(getBlockNumber(), "block number exceeds 32 bits"); } if (pieBorrowState[pToken].index == 0) { pieBorrowState[pToken] = PieMarketState({ index: pieInitialIndex, block: safe32(getBlockNumber(), "block number exceeds 32 bits") }); } else { pieBorrowState[pToken].block = safe32(getBlockNumber(), "block number exceeds 32 bits"); } } /** * @notice Remove a market from pieMarkets, preventing it from earning PIE in the flywheel * @param pToken The address of the market to drop */ function _dropPieMarket(address pToken) public { require(msg.sender == admin, "only admin can drop pie market"); Market storage market = markets[pToken]; require(market.isPied == true, "market is not a pie market"); market.isPied = false; emit MarketPied(pToken, false); refreshPieSpeedsInternal(); } /** * @notice Return all of the markets * @dev The automatic getter may be used to access an individual market. * @return The list of market addresses */ function getAllMarkets() public view returns (address[] memory) { return allMarkets; } function getBlockNumber() public view virtual returns (uint) { return block.number; } /** * @notice Return the address of the PIE token * @return The address of PIE */ function getPieAddress() public view virtual returns (address) { return pieAddress; } function getOracle() public view override returns (PriceOracle) { return oracle; } }
pragma solidity ^0.7.4; import "./PriceOracle.sol"; abstract contract ControllerInterface { /// @notice Indicator that this is a Controller contract (for inspection) bool public constant isController = true; /*** Assets You Are In ***/ function enterMarkets(address[] calldata pTokens) external virtual returns (uint[] memory); function exitMarket(address pToken) external virtual returns (uint); /*** Policy Hooks ***/ function mintAllowed(address pToken, address minter, uint mintAmount) external virtual returns (uint); function redeemAllowed(address pToken, address redeemer, uint redeemTokens) external virtual returns (uint); function redeemVerify(address pToken, address redeemer, uint redeemAmount, uint redeemTokens) external virtual; function borrowAllowed(address pToken, address borrower, uint borrowAmount) external virtual returns (uint); function repayBorrowAllowed( address pToken, address payer, address borrower, uint repayAmount) external virtual returns (uint); function liquidateBorrowAllowed( address pTokenBorrowed, address pTokenCollateral, address liquidator, address borrower, uint repayAmount) external virtual returns (uint); function seizeAllowed( address pTokenCollateral, address pTokenBorrowed, address liquidator, address borrower, uint seizeTokens) external virtual returns (uint); function transferAllowed(address pToken, address src, address dst, uint transferTokens) external virtual returns (uint); /*** Liquidity/Liquidation Calculations ***/ function liquidateCalculateSeizeTokens( address pTokenBorrowed, address pTokenCollateral, uint repayAmount) external view virtual returns (uint, uint); function getOracle() external view virtual returns (PriceOracle); }
pragma solidity ^0.7.4; import "./PriceOracle.sol"; contract UnitrollerAdminStorage { /** * @notice Administrator for this contract */ address public admin; /** * @notice Pending administrator for this contract */ address public pendingAdmin; /** * @notice Active brains of Unitroller */ address public controllerImplementation; /** * @notice Pending brains of Unitroller */ address public pendingControllerImplementation; } contract ControllerStorage is UnitrollerAdminStorage { /** * @notice Oracle which gives the price of any given asset */ PriceOracle public oracle; /** * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow */ uint public closeFactorMantissa; /** * @notice Multiplier representing the discount on collateral that a liquidator receives */ uint public liquidationIncentiveMantissa; /** * @notice Max number of assets a single account can participate in (borrow or use as collateral) */ uint public maxAssets; /** * @notice Per-account mapping of "assets you are in", capped by maxAssets */ mapping(address => address[]) public accountAssets; /// @notice isListed Whether or not this market is listed /** * @notice collateralFactorMantissa Multiplier representing the most one can borrow against their collateral in this market. * For instance, 0.9 to allow borrowing 90% of collateral value. * Must be between 0 and 1, and stored as a mantissa. */ /// @notice accountMembership Per-market mapping of "accounts in this asset" /// @notice isPied Whether or not this market receives PIE struct Market { bool isListed; uint collateralFactorMantissa; mapping(address => bool) accountMembership; bool isPied; } /** * @notice Official mapping of pTokens -> Market metadata * @dev Used e.g. to determine if a market is supported */ mapping(address => Market) public markets; /** * @notice The Pause Guardian can pause certain actions as a safety mechanism. * Actions which allow users to remove their own assets cannot be paused. * Liquidation / seizing / transfer can only be paused globally, not by market. */ address public pauseGuardian; bool public _mintGuardianPaused; bool public _borrowGuardianPaused; bool public transferGuardianPaused; bool public seizeGuardianPaused; mapping(address => bool) public mintGuardianPaused; mapping(address => bool) public borrowGuardianPaused; /// @notice index The market's last updated pieBorrowIndex or pieSupplyIndex /// @notice block The block number the index was last updated at struct PieMarketState { uint224 index; uint32 block; } /// @notice A list of all markets address[] public allMarkets; /// @notice The rate at which the flywheel distributes PIE, per block uint public pieRate; /// @notice Address of the PIE token address public pieAddress; // @notice Address of the factory address public factory; /// @notice The portion of pieRate that each market currently receives mapping(address => uint) public pieSpeeds; /// @notice The PIE market supply state for each market mapping(address => PieMarketState) public pieSupplyState; /// @notice The PIE market borrow state for each market mapping(address => PieMarketState) public pieBorrowState; /// @notice The PIE borrow index for each market for each supplier as of the last time they accrued PIE mapping(address => mapping(address => uint)) public pieSupplierIndex; /// @notice The PIE borrow index for each market for each borrower as of the last time they accrued PIE mapping(address => mapping(address => uint)) public pieBorrowerIndex; /// @notice The PIE accrued but not yet transferred to each user mapping(address => uint) public pieAccrued; }
pragma solidity ^0.7.4; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external returns (bool); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
pragma solidity ^0.7.4; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return The balance */ function balanceOf(address owner) external view returns (uint256); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom(address src, address dst, uint256 amount) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
pragma solidity ^0.7.4; contract ControllerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, CONTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, // no longer possible MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, PRICE_UPDATE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PAUSE_GUARDIAN_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } contract TokenErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, BAD_INPUT, CONTROLLER_REJECTION, CONTROLLER_CALCULATION_ERROR, INTEREST_RATE_MODEL_ERROR, INVALID_ACCOUNT_PAIR, INVALID_CLOSE_AMOUNT_REQUESTED, INVALID_COLLATERAL_FACTOR, MATH_ERROR, MARKET_NOT_FRESH, MARKET_NOT_LISTED, TOKEN_INSUFFICIENT_ALLOWANCE, TOKEN_INSUFFICIENT_BALANCE, TOKEN_INSUFFICIENT_CASH, TOKEN_TRANSFER_IN_FAILED, TOKEN_TRANSFER_OUT_FAILED } /* * Note: FailureInfo (but not Error) is kept in alphabetical order * This is because FailureInfo grows significantly faster, and * the order of Error has some meaning, while the order of FailureInfo * is entirely arbitrary. */ enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, ACCRUE_INTEREST_BORROW_RATE_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, BORROW_ACCRUE_INTEREST_FAILED, BORROW_CASH_NOT_AVAILABLE, BORROW_FRESHNESS_CHECK, BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, BORROW_MARKET_NOT_LISTED, BORROW_CONTROLLER_REJECTION, LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED, LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED, LIQUIDATE_COLLATERAL_FRESHNESS_CHECK, LIQUIDATE_CONTROLLER_REJECTION, LIQUIDATE_CONTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED, LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX, LIQUIDATE_CLOSE_AMOUNT_IS_ZERO, LIQUIDATE_FRESHNESS_CHECK, LIQUIDATE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_REPAY_BORROW_FRESH_FAILED, LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, LIQUIDATE_SEIZE_CONTROLLER_REJECTION, LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER, LIQUIDATE_SEIZE_TOO_MUCH, MINT_ACCRUE_INTEREST_FAILED, MINT_CONTROLLER_REJECTION, MINT_EXCHANGE_CALCULATION_FAILED, MINT_EXCHANGE_RATE_READ_FAILED, MINT_FRESHNESS_CHECK, MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, MINT_TRANSFER_IN_FAILED, MINT_TRANSFER_IN_NOT_POSSIBLE, REDEEM_ACCRUE_INTEREST_FAILED, REDEEM_CONTROLLER_REJECTION, REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, REDEEM_EXCHANGE_RATE_READ_FAILED, REDEEM_FRESHNESS_CHECK, REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, REDEEM_TRANSFER_OUT_NOT_POSSIBLE, REDUCE_RESERVES_ACCRUE_INTEREST_FAILED, REDUCE_RESERVES_ADMIN_CHECK, REDUCE_RESERVES_CASH_NOT_AVAILABLE, REDUCE_RESERVES_FRESH_CHECK, REDUCE_RESERVES_VALIDATION, REPAY_BEHALF_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCRUE_INTEREST_FAILED, REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, REPAY_BORROW_CONTROLLER_REJECTION, REPAY_BORROW_FRESHNESS_CHECK, REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, REPAY_BORROW_TRANSFER_IN_NOT_POSSIBLE, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_VALIDATION, SET_CONTROLLER_OWNER_CHECK, SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED, SET_INTEREST_RATE_MODEL_FRESH_CHECK, SET_INTEREST_RATE_MODEL_OWNER_CHECK, SET_MAX_ASSETS_OWNER_CHECK, SET_ORACLE_MARKET_NOT_LISTED, SET_PENDING_ADMIN_OWNER_CHECK, SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED, SET_RESERVE_FACTOR_ADMIN_CHECK, SET_RESERVE_FACTOR_FRESH_CHECK, SET_RESERVE_FACTOR_BOUNDS_CHECK, TRANSFER_CONTROLLER_REJECTION, TRANSFER_NOT_ALLOWED, TRANSFER_NOT_ENOUGH, TRANSFER_TOO_MUCH, ADD_RESERVES_ACCRUE_INTEREST_FAILED, ADD_RESERVES_FRESH_CHECK, ADD_RESERVES_TRANSFER_IN_NOT_POSSIBLE, SET_NEW_IMPLEMENTATION } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } contract OracleErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, UPDATE_PRICE } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, NO_RESERVES, PERIOD_NOT_ELAPSED, SET_NEW_ADDRESSES, SET_NEW_IMPLEMENTATION, SET_PENDING_ADMIN_OWNER_CHECK } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } } contract FactoryErrorReporter { enum Error { NO_ERROR, INVALID_POOL, MARKET_NOT_LISTED, UNAUTHORIZED } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, CREATE_PETH_POOL, CREATE_PPIE_POOL, DEFICIENCY_ETH_LIQUIDITY_IN_POOL, PAIR_IS_NOT_EXIST, SET_MIN_LIQUIDITY_OWNER_CHECK, SET_NEW_CONTROLLER, SET_NEW_DECIMALS, SET_NEW_EXCHANGE_RATE, SET_NEW_IMPLEMENTATION, SET_NEW_INTEREST_RATE_MODEL, SET_NEW_ORACLE, SET_NEW_RESERVE_FACTOR, SET_PENDING_ADMIN_OWNER_CHECK, SUPPORT_MARKET_BAD_RESULT } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } } contract RegistryErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, SET_NEW_IMPLEMENTATION, SET_PENDING_ADMIN_OWNER_CHECK, SET_NEW_FACTORY } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } }
pragma solidity ^0.7.4; import "./CarefulMath.sol"; /** * @title Exponential module for storing fixed-precision decimals * @author DeFiPie * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract Exponential is CarefulMath { uint constant expScale = 1e18; uint constant doubleScale = 1e36; uint constant halfExpScale = expScale/2; uint constant mantissaOne = expScale; struct Exp { uint mantissa; } struct Double { uint mantissa; } /** * @dev Creates an exponential from numerator and denominator values. * Note: Returns an error if (`num` * 10e18) > MAX_INT, * or if `denom` is zero. */ function getExp(uint num, uint denom) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledNumerator) = mulUInt(num, expScale); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } (MathError err1, uint rational) = divUInt(scaledNumerator, denom); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: rational})); } /** * @dev Adds two exponentials, returning a new exponential. */ function addExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = addUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Subtracts two exponentials, returning a new exponential. */ function subExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError error, uint result) = subUInt(a.mantissa, b.mantissa); return (error, Exp({mantissa: result})); } /** * @dev Multiply an Exp by a scalar, returning a new Exp. */ function mulScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint scaledMantissa) = mulUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: scaledMantissa})); } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mulScalarTruncate(Exp memory a, uint scalar) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(product)); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mulScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (MathError, uint) { (MathError err, Exp memory product) = mulScalar(a, scalar); if (err != MathError.NO_ERROR) { return (err, 0); } return addUInt(truncate(product), addend); } /** * @dev Divide an Exp by a scalar, returning a new Exp. */ function divScalar(Exp memory a, uint scalar) pure internal returns (MathError, Exp memory) { (MathError err0, uint descaledMantissa) = divUInt(a.mantissa, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return (MathError.NO_ERROR, Exp({mantissa: descaledMantissa})); } /** * @dev Divide a scalar by an Exp, returning a new Exp. */ function divScalarByExp(uint scalar, Exp memory divisor) pure internal returns (MathError, Exp memory) { /* We are doing this as: getExp(mulUInt(expScale, scalar), divisor.mantissa) How it works: Exp = a / b; Scalar = s; `s / (a / b)` = `b * s / a` and since for an Exp `a = mantissa, b = expScale` */ (MathError err0, uint numerator) = mulUInt(expScale, scalar); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } return getExp(numerator, divisor.mantissa); } /** * @dev Divide a scalar by an Exp, then truncate to return an unsigned integer. */ function divScalarByExpTruncate(uint scalar, Exp memory divisor) pure internal returns (MathError, uint) { (MathError err, Exp memory fraction_) = divScalarByExp(scalar, divisor); if (err != MathError.NO_ERROR) { return (err, 0); } return (MathError.NO_ERROR, truncate(fraction_)); } /** * @dev Multiplies two exponentials, returning a new exponential. */ function mulExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { (MathError err0, uint doubleScaledProduct) = mulUInt(a.mantissa, b.mantissa); if (err0 != MathError.NO_ERROR) { return (err0, Exp({mantissa: 0})); } // We add half the scale before dividing so that we get rounding instead of truncation. // See "Listing 6" and text above it at https://accu.org/index.php/journals/1717 // Without this change, a result like 6.6...e-19 will be truncated to 0 instead of being rounded to 1e-18. (MathError err1, uint doubleScaledProductWithHalfScale) = addUInt(halfExpScale, doubleScaledProduct); if (err1 != MathError.NO_ERROR) { return (err1, Exp({mantissa: 0})); } (MathError err2, uint product) = divUInt(doubleScaledProductWithHalfScale, expScale); // The only error `div` can return is MathError.DIVISION_BY_ZERO but we control `expScale` and it is not zero. assert(err2 == MathError.NO_ERROR); return (MathError.NO_ERROR, Exp({mantissa: product})); } /** * @dev Multiplies two exponentials given their mantissas, returning a new exponential. */ function mulExp(uint a, uint b) pure internal returns (MathError, Exp memory) { return mulExp(Exp({mantissa: a}), Exp({mantissa: b})); } /** * @dev Multiplies three exponentials, returning a new exponential. */ function mulExp3(Exp memory a, Exp memory b, Exp memory c) pure internal returns (MathError, Exp memory) { (MathError err, Exp memory ab) = mulExp(a, b); if (err != MathError.NO_ERROR) { return (err, ab); } return mulExp(ab, c); } /** * @dev Divides two exponentials, returning a new exponential. * (a/scale) / (b/scale) = (a/scale) * (scale/b) = a/b, * which we can scale as an Exp by calling getExp(a.mantissa, b.mantissa) */ function divExp(Exp memory a, Exp memory b) pure internal returns (MathError, Exp memory) { return getExp(a.mantissa, b.mantissa); } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) pure internal returns (uint) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa < right.mantissa; } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev Checks if left Exp > right Exp. */ function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa > right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) pure internal returns (bool) { return value.mantissa == 0; } function safe224(uint n, string memory errorMessage) pure internal returns (uint224) { require(n < 2**224, errorMessage); return uint224(n); } function safe32(uint n, string memory errorMessage) pure internal returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(uint a, uint b) pure internal returns (uint) { return add_(a, b, "addition overflow"); } function add_(uint a, uint b, string memory errorMessage) pure internal returns (uint) { uint c = a + b; require(c >= a, errorMessage); return c; } function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(uint a, uint b) pure internal returns (uint) { return sub_(a, b, "subtraction underflow"); } function sub_(uint a, uint b, string memory errorMessage) pure internal returns (uint) { require(b <= a, errorMessage); return a - b; } function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale}); } function mul_(Exp memory a, uint b) pure internal returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b)}); } function mul_(uint a, Exp memory b) pure internal returns (uint) { return mul_(a, b.mantissa) / expScale; } function mul_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale}); } function mul_(Double memory a, uint b) pure internal returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b)}); } function mul_(uint a, Double memory b) pure internal returns (uint) { return mul_(a, b.mantissa) / doubleScale; } function mul_(uint a, uint b) pure internal returns (uint) { return mul_(a, b, "multiplication overflow"); } function mul_(uint a, uint b, string memory errorMessage) pure internal returns (uint) { if (a == 0 || b == 0) { return 0; } uint c = a * b; require(c / a == b, errorMessage); return c; } function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)}); } function div_(Exp memory a, uint b) pure internal returns (Exp memory) { return Exp({mantissa: div_(a.mantissa, b)}); } function div_(uint a, Exp memory b) pure internal returns (uint) { return div_(mul_(a, expScale), b.mantissa); } function div_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)}); } function div_(Double memory a, uint b) pure internal returns (Double memory) { return Double({mantissa: div_(a.mantissa, b)}); } function div_(uint a, Double memory b) pure internal returns (uint) { return div_(mul_(a, doubleScale), b.mantissa); } function div_(uint a, uint b) pure internal returns (uint) { return div_(a, b, "divide by zero"); } function div_(uint a, uint b, string memory errorMessage) pure internal returns (uint) { require(b > 0, errorMessage); return a / b; } function fraction(uint a, uint b) pure internal returns (Double memory) { return Double({mantissa: div_(mul_(a, doubleScale), b)}); } }
pragma solidity ^0.7.4; /** * @title DeFiPie's InterestRateModel Interface * @author DeFiPie */ abstract contract InterestRateModel { /// @notice Indicator that this is an InterestRateModel contract (for inspection) bool public constant isInterestRateModel = true; /** * @notice Calculates the current borrow interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @return The borrow rate per block (as a percentage, and scaled by 1e18) */ function getBorrowRate(uint cash, uint borrows, uint reserves) external view virtual returns (uint); /** * @notice Calculates the current supply interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @param reserveFactorMantissa The current reserve factor the market has * @return The supply rate per block (as a percentage, and scaled by 1e18) */ function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) external view virtual returns (uint); }
pragma solidity ^0.7.4; pragma experimental ABIEncoderV2; import "../Exponential.sol"; import "../Controller.sol"; import "../PToken.sol"; contract ClaimCalc is Exponential { Controller public controller; constructor(address _controller) { controller = Controller(_controller); } function allMarkets() public view returns (address[] memory) { return controller.getAllMarkets(); } function getBlockNumber() public view returns (uint) { return controller.getBlockNumber() + 1; } function updatePieBorrowIndex(address pToken, Exp memory marketBorrowIndex) public view returns (Double memory) { (uint224 index, uint32 block) = controller.pieBorrowState(pToken); Double memory newBorrowindex = Double({mantissa: index}); uint borrowSpeed = controller.pieSpeeds(pToken); uint blockNumber = getBlockNumber(); uint deltaBlocks = sub_(blockNumber, uint(block)); if (deltaBlocks > 0 && borrowSpeed > 0) { uint borrowAmount = div_(PTokenInterface(pToken).totalBorrows(), marketBorrowIndex); uint pieAccrued = mul_(deltaBlocks, borrowSpeed); Double memory ratio = borrowAmount > 0 ? fraction(pieAccrued, borrowAmount) : Double({mantissa: 0}); newBorrowindex = add_(Double({mantissa: index}), ratio); } return newBorrowindex; } function updatePieSupplyIndex(address pToken) public view returns (Double memory) { (uint224 index, uint32 block) = controller.pieSupplyState(pToken); Double memory newSupplyIndex = Double({mantissa: index}); uint supplySpeed = controller.pieSpeeds(pToken); uint blockNumber = getBlockNumber(); uint deltaBlocks = sub_(blockNumber, uint(block)); if (deltaBlocks > 0 && supplySpeed > 0) { uint supplyTokens = PTokenInterface(pToken).totalSupply(); uint pieAccrued = mul_(deltaBlocks, supplySpeed); Double memory ratio = supplyTokens > 0 ? fraction(pieAccrued, supplyTokens) : Double({mantissa: 0}); newSupplyIndex = add_(Double({mantissa: index}), ratio); } return newSupplyIndex; } function calcClaimPie(address holder) public view returns (uint) { return calcClaimPie(holder, controller.getAllMarkets()); } function calcClaimPie(address holder, address[] memory pTokens) public view returns (uint) { uint claimAmount = calcClaimPieWithoutAccrued(holder, pTokens); uint accrued = controller.pieAccrued(holder); return claimAmount + accrued; } function calcClaimPieWithoutAccrued(address holder, address[] memory pTokens) public view returns (uint) { uint amount; for (uint i = 0; i < pTokens.length; i++) { address pToken = pTokens[i]; Exp memory marketBorrowIndex = Exp({mantissa: PTokenInterface(pToken).borrowIndex()}); Double memory borrowIndex = updatePieBorrowIndex(pToken, marketBorrowIndex); Double memory borrowerIndex = Double({mantissa: controller.pieBorrowerIndex(pToken, holder)}); if (borrowerIndex.mantissa > 0) { Double memory deltaIndex = sub_(borrowIndex, borrowerIndex); uint borrowerAmount = div_(PTokenInterface(pToken).borrowBalanceStored(holder), marketBorrowIndex); uint borrowerDelta = mul_(borrowerAmount, deltaIndex); amount = add_(amount, borrowerDelta); } Double memory supplyIndex = updatePieSupplyIndex(pToken); Double memory supplierIndex = Double({mantissa: controller.pieSupplierIndex(pToken, holder)}); if (supplierIndex.mantissa == 0 && supplyIndex.mantissa > 0) { supplierIndex.mantissa = controller.pieInitialIndex(); } Double memory deltaIndex = sub_(supplyIndex, supplierIndex); uint supplierTokens = PTokenInterface(pToken).balanceOf(holder); uint supplierDelta = mul_(supplierTokens, deltaIndex); amount = add_(amount, supplierDelta); } return amount; } function checkClaimPieMarkets(address holder) public view returns (address[] memory) { return checkClaimPieMarkets(holder, controller.getAllMarkets()); } function checkClaimPieMarkets(address holder, address[] memory pTokens) public view returns (address[] memory) { address[] memory markets = new address[](pTokens.length); uint count; for (uint i = 0; i < pTokens.length; i++) { uint delta; Exp memory marketBorrowIndex = Exp({mantissa: PTokenInterface(pTokens[i]).borrowIndex()}); Double memory index = updatePieBorrowIndex(pTokens[i], marketBorrowIndex); Double memory borrowerIndex = Double({mantissa: controller.pieBorrowerIndex(pTokens[i], holder)}); if (borrowerIndex.mantissa > 0) { uint borrowerAmount = div_(PTokenInterface(pTokens[i]).borrowBalanceStored(holder), marketBorrowIndex); delta = mul_(borrowerAmount, sub_(index, borrowerIndex)); } index = updatePieSupplyIndex(pTokens[i]); Double memory supplierIndex = Double({mantissa: controller.pieSupplierIndex(pTokens[i], holder)}); if (supplierIndex.mantissa == 0 && index.mantissa > 0) { supplierIndex.mantissa = controller.pieInitialIndex(); } uint supplierTokens = PTokenInterface(pTokens[i]).balanceOf(holder); delta = delta + mul_(supplierTokens, sub_(index, supplierIndex)); if (delta > 0) { markets[count] = pTokens[i]; count++; } } address[] memory claimPieMarkets = new address[](count); for(uint i = 0; i < count; i++) { claimPieMarkets[i] = markets[i]; } return claimPieMarkets; } }
pragma solidity ^0.7.4; import "./ControllerInterface.sol"; import "./PTokenInterfaces.sol"; import "./ErrorReporter.sol"; import "./Exponential.sol"; import "./EIP20Interface.sol"; import "./EIP20NonStandardInterface.sol"; import "./InterestRateModel.sol"; import "./RegistryInterface.sol"; import "./PriceOracle.sol"; /** * @title DeFiPie's PToken Contract * @notice Abstract base for PTokens * @author DeFiPie */ abstract contract PToken is PTokenInterface, Exponential, TokenErrorReporter { /** * @notice Initialize the money market * @param registry_ The address of the Registry * @param controller_ The address of the Controller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ function initialize( RegistryInterface registry_, ControllerInterface controller_, InterestRateModel interestRateModel_, uint initialExchangeRateMantissa_, uint initialReserveFactorMantissa_, string memory name_, string memory symbol_, uint8 decimals_ ) public virtual { require(accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once"); registry = address(registry_); // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero."); reserveFactorMantissa = initialReserveFactorMantissa_; // Set the controller uint err = _setControllerInternal(controller_); require(err == uint(Error.NO_ERROR), "setting controller failed"); // Initialize block number and borrow index (block number mocks depend on controller being set) accrualBlockNumber = getBlockNumber(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block number / borrow index) err = _setInterestRateModelFreshInternal(interestRateModel_); require(err == uint(Error.NO_ERROR), "setting interest rate model failed"); name = name_; symbol = symbol_; decimals = decimals_; // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund) _notEntered = true; } /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally * @param spender The address of the account performing the transfer * @param src The address of the source account * @param dst The address of the destination account * @param tokens The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferTokens(address spender, address src, address dst, uint tokens) internal returns (uint) { /* Fail if transfer not allowed */ uint allowed = controller.transferAllowed(address(this), src, dst, tokens); if (allowed != 0) { return failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.TRANSFER_CONTROLLER_REJECTION, allowed); } /* Do not allow self-transfers */ if (src == dst) { return fail(Error.BAD_INPUT, FailureInfo.TRANSFER_NOT_ALLOWED); } /* Get the allowance, infinite for the account owner */ uint startingAllowance = 0; if (spender == src) { startingAllowance = uint(-1); } else { startingAllowance = transferAllowances[src][spender]; } /* Do the calculations, checking for {under,over}flow */ MathError mathErr; uint allowanceNew; uint srcTokensNew; uint dstTokensNew; (mathErr, allowanceNew) = subUInt(startingAllowance, tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ALLOWED); } (mathErr, srcTokensNew) = subUInt(accountTokens[src], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_NOT_ENOUGH); } (mathErr, dstTokensNew) = addUInt(accountTokens[dst], tokens); if (mathErr != MathError.NO_ERROR) { return fail(Error.MATH_ERROR, FailureInfo.TRANSFER_TOO_MUCH); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) accountTokens[src] = srcTokensNew; accountTokens[dst] = dstTokensNew; /* Eat some of the allowance (if necessary) */ if (startingAllowance != uint(-1)) { transferAllowances[src][spender] = allowanceNew; } /* We emit a Transfer event */ emit Transfer(src, dst, tokens); return uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external override virtual nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external override virtual nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == uint(Error.NO_ERROR); } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external override returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view override returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view override returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external override returns (uint) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); (MathError mErr, uint balance) = mulScalarTruncate(exchangeRate, accountTokens[owner]); require(mErr == MathError.NO_ERROR, "balance could not be calculated"); return balance; } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by controller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view override returns (uint, uint, uint, uint) { uint pTokenBalance = accountTokens[account]; uint borrowBalance; uint exchangeRateMantissa; MathError mErr; (mErr, borrowBalance) = borrowBalanceStoredInternal(account); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } (mErr, exchangeRateMantissa) = exchangeRateStoredInternal(); if (mErr != MathError.NO_ERROR) { return (uint(Error.MATH_ERROR), 0, 0, 0); } return (uint(Error.NO_ERROR), pTokenBalance, borrowBalance, exchangeRateMantissa); } function getBorrowSnapshot(address account) external view returns(uint, uint) { return (accountBorrows[account].principal, accountBorrows[account].interestIndex); } /** * @dev Function to simply retrieve block number * This exists mainly for inheriting test contracts to stub this result. */ function getBlockNumber() internal view virtual returns (uint) { return block.number; } /** * @notice Returns the current per-block borrow interest rate for this pToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerBlock() external view override returns (uint) { return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); } /** * @notice Returns the current per-block supply interest rate for this pToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerBlock() external view override returns (uint) { return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa); } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external override nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external override nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view override returns (uint) { (MathError err, uint result) = borrowBalanceStoredInternal(account); require(err == MathError.NO_ERROR, "borrowBalanceStored: borrowBalanceStoredInternal failed"); return result; } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return (error code, the calculated balance or 0 if error code is non-zero) */ function borrowBalanceStoredInternal(address account) internal view returns (MathError, uint) { /* Note: we do not assert that the market is up to date */ MathError mathErr; uint principalTimesIndex; uint result; /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return (MathError.NO_ERROR, 0); } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ (mathErr, principalTimesIndex) = mulUInt(borrowSnapshot.principal, borrowIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, result) = divUInt(principalTimesIndex, borrowSnapshot.interestIndex); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, result); } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public override nonReentrant returns (uint) { require(accrueInterest() == uint(Error.NO_ERROR), "accrue interest failed"); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the PToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view override returns (uint) { (MathError err, uint result) = exchangeRateStoredInternal(); require(err == MathError.NO_ERROR, "exchangeRateStored: exchangeRateStoredInternal failed"); return result; } /** * @notice Calculates the exchange rate from the underlying to the PToken * @dev This function does not accrue interest before calculating the exchange rate * @return (error code, calculated exchange rate scaled by 1e18) */ function exchangeRateStoredInternal() internal view virtual returns (MathError, uint) { uint _totalSupply = totalSupply; if (_totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return (MathError.NO_ERROR, initialExchangeRateMantissa); } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint totalCash = getCashPrior(); uint cashPlusBorrowsMinusReserves; Exp memory exchangeRate; MathError mathErr; (mathErr, cashPlusBorrowsMinusReserves) = addThenSubUInt(totalCash, totalBorrows, totalReserves); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } (mathErr, exchangeRate) = getExp(cashPlusBorrowsMinusReserves, _totalSupply); if (mathErr != MathError.NO_ERROR) { return (mathErr, 0); } return (MathError.NO_ERROR, exchangeRate.mantissa); } } /** * @notice Get cash balance of this pToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view override returns (uint) { return getCashPrior(); } /** * @notice Applies accrued interest to total borrows and reserves * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public override returns (uint) { controller.getOracle().updateUnderlyingPrice(address(this)); /* Remember the initial block number */ uint currentBlockNumber = getBlockNumber(); uint accrualBlockNumberPrior = accrualBlockNumber; /* Short-circuit accumulating 0 interest */ if (accrualBlockNumberPrior == currentBlockNumber) { return uint(Error.NO_ERROR); } /* Read the previous values out of storage */ uint cashPrior = getCashPrior(); uint borrowsPrior = totalBorrows; uint reservesPrior = totalReserves; uint borrowIndexPrior = borrowIndex; /* Calculate the current borrow interest rate */ uint borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior); require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high"); /* Calculate the number of blocks elapsed since the last accrual */ (MathError mathErr, uint blockDelta) = subUInt(currentBlockNumber, accrualBlockNumberPrior); require(mathErr == MathError.NO_ERROR, "could not calculate block delta"); /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * blockDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ Exp memory simpleInterestFactor; uint interestAccumulated; uint totalBorrowsNew; uint totalReservesNew; uint borrowIndexNew; (mathErr, simpleInterestFactor) = mulScalar(Exp({mantissa: borrowRateMantissa}), blockDelta); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_SIMPLE_INTEREST_FACTOR_CALCULATION_FAILED, uint(mathErr)); } (mathErr, interestAccumulated) = mulScalarTruncate(simpleInterestFactor, borrowsPrior); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_ACCUMULATED_INTEREST_CALCULATION_FAILED, uint(mathErr)); } (mathErr, totalBorrowsNew) = addUInt(interestAccumulated, borrowsPrior); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_BORROWS_CALCULATION_FAILED, uint(mathErr)); } (mathErr, totalReservesNew) = mulScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), interestAccumulated, reservesPrior); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_TOTAL_RESERVES_CALCULATION_FAILED, uint(mathErr)); } (mathErr, borrowIndexNew) = mulScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.ACCRUE_INTEREST_NEW_BORROW_INDEX_CALCULATION_FAILED, uint(mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockNumber = currentBlockNumber; borrowIndex = borrowIndexNew; totalBorrows = totalBorrowsNew; totalReserves = totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew, totalReservesNew); return uint(Error.NO_ERROR); } /** * @notice Sender supplies assets into the market and receives pTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount. */ function mintInternal(uint mintAmount) internal nonReentrant returns (uint, uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return (fail(Error(error), FailureInfo.MINT_ACCRUE_INTEREST_FAILED), 0); } // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to return mintFresh(msg.sender, mintAmount); } struct MintLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint mintTokens; uint totalSupplyNew; uint accountTokensNew; uint actualMintAmount; } /** * @notice User supplies assets into the market and receives pTokens in exchange * @dev Assumes interest has already been accrued up to the current block * @param minter The address of the account which is supplying the assets * @param mintAmount The amount of the underlying asset to supply * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual mint amount. */ function mintFresh(address minter, uint mintAmount) internal returns (uint, uint) { /* Fail if mint not allowed */ uint allowed = controller.mintAllowed(address(this), minter, mintAmount); if (allowed != 0) { return (failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.MINT_CONTROLLER_REJECTION, allowed), 0); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.MINT_FRESHNESS_CHECK), 0); } MintLocalVars memory vars; (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return (failOpaque(Error.MATH_ERROR, FailureInfo.MINT_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)), 0); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call `doTransferIn` for the minter and the mintAmount. * Note: The pToken must handle variations between ERC-20 and ETH underlying. * `doTransferIn` reverts if anything goes wrong, since we can't be sure if * side-effects occurred. The function returns the amount actually transferred, * in case of a fee. On success, the pToken holds an additional `actualMintAmount` * of cash. */ vars.actualMintAmount = doTransferIn(minter, mintAmount); /* * We get the current exchange rate and calculate the number of pTokens to be minted: * mintTokens = actualMintAmount / exchangeRate */ (vars.mathErr, vars.mintTokens) = divScalarByExpTruncate(vars.actualMintAmount, Exp({mantissa: vars.exchangeRateMantissa})); require(vars.mathErr == MathError.NO_ERROR, "MINT_EXCHANGE_CALCULATION_FAILED"); /* * We calculate the new total supply of pTokens and minter token balance, checking for overflow: * totalSupplyNew = totalSupply + mintTokens * accountTokensNew = accountTokens[minter] + mintTokens */ (vars.mathErr, vars.totalSupplyNew) = addUInt(totalSupply, vars.mintTokens); require(vars.mathErr == MathError.NO_ERROR, "MINT_NEW_TOTAL_SUPPLY_CALCULATION_FAILED"); (vars.mathErr, vars.accountTokensNew) = addUInt(accountTokens[minter], vars.mintTokens); require(vars.mathErr == MathError.NO_ERROR, "MINT_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED"); /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[minter] = vars.accountTokensNew; /* We emit a Mint event, and a Transfer event */ emit Mint(minter, vars.actualMintAmount, vars.mintTokens); emit Transfer(address(this), minter, vars.mintTokens); return (uint(Error.NO_ERROR), vars.actualMintAmount); } /** * @notice Sender redeems PTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of pTokens to redeem into underlying * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemInternal(uint redeemTokens) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, redeemTokens, 0); } /** * @notice Sender redeems pTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to receive from redeeming pTokens * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemUnderlyingInternal(uint redeemAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted redeem failed return fail(Error(error), FailureInfo.REDEEM_ACCRUE_INTEREST_FAILED); } // redeemFresh emits redeem-specific logs on errors, so we don't need to return redeemFresh(msg.sender, 0, redeemAmount); } struct RedeemLocalVars { Error err; MathError mathErr; uint exchangeRateMantissa; uint redeemTokens; uint redeemAmount; uint totalSupplyNew; uint accountTokensNew; } /** * @notice User redeems pTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block * @param redeemer The address of the account which is redeeming the tokens * @param redeemTokensIn The number of pTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero) * @param redeemAmountIn The number of underlying tokens to receive from redeeming pTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero) * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function redeemFresh(address payable redeemer, uint redeemTokensIn, uint redeemAmountIn) internal returns (uint) { require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero"); RedeemLocalVars memory vars; /* exchangeRate = invoke Exchange Rate Stored() */ (vars.mathErr, vars.exchangeRateMantissa) = exchangeRateStoredInternal(); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_RATE_READ_FAILED, uint(vars.mathErr)); } /* If redeemTokensIn > 0: */ if (redeemTokensIn > 0) { /* * We calculate the exchange rate and the amount of underlying to be redeemed: * redeemTokens = redeemTokensIn * redeemAmount = redeemTokensIn x exchangeRateCurrent */ vars.redeemTokens = redeemTokensIn; (vars.mathErr, vars.redeemAmount) = mulScalarTruncate(Exp({mantissa: vars.exchangeRateMantissa}), redeemTokensIn); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_TOKENS_CALCULATION_FAILED, uint(vars.mathErr)); } } else { /* * We get the current exchange rate and calculate the amount to be redeemed: * redeemTokens = redeemAmountIn / exchangeRate * redeemAmount = redeemAmountIn */ (vars.mathErr, vars.redeemTokens) = divScalarByExpTruncate(redeemAmountIn, Exp({mantissa: vars.exchangeRateMantissa})); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_EXCHANGE_AMOUNT_CALCULATION_FAILED, uint(vars.mathErr)); } vars.redeemAmount = redeemAmountIn; } /* Fail if redeem not allowed */ uint allowed = controller.redeemAllowed(address(this), redeemer, vars.redeemTokens); if (allowed != 0) { return failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.REDEEM_CONTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDEEM_FRESHNESS_CHECK); } /* * We calculate the new total supply and redeemer balance, checking for underflow: * totalSupplyNew = totalSupply - redeemTokens * accountTokensNew = accountTokens[redeemer] - redeemTokens */ (vars.mathErr, vars.totalSupplyNew) = subUInt(totalSupply, vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_TOTAL_SUPPLY_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountTokensNew) = subUInt(accountTokens[redeemer], vars.redeemTokens); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.REDEEM_NEW_ACCOUNT_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } /* Fail gracefully if protocol has insufficient cash */ if (getCashPrior() < vars.redeemAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDEEM_TRANSFER_OUT_NOT_POSSIBLE); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the redeemer and the redeemAmount. * Note: The pToken must handle variations between ERC-20 and ETH underlying. * On success, the pToken has redeemAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(redeemer, vars.redeemAmount); /* We write previously calculated values into storage */ totalSupply = vars.totalSupplyNew; accountTokens[redeemer] = vars.accountTokensNew; /* We emit a Transfer event, and a Redeem event */ emit Transfer(redeemer, address(this), vars.redeemTokens); emit Redeem(redeemer, vars.redeemAmount, vars.redeemTokens); /* We call the defense hook */ controller.redeemVerify(address(this), redeemer, vars.redeemAmount, vars.redeemTokens); return uint(Error.NO_ERROR); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowInternal(uint borrowAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return fail(Error(error), FailureInfo.BORROW_ACCRUE_INTEREST_FAILED); } // borrowFresh emits borrow-specific logs on errors, so we don't need to return borrowFresh(msg.sender, borrowAmount); } struct BorrowLocalVars { MathError mathErr; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function borrowFresh(address payable borrower, uint borrowAmount) internal returns (uint) { /* Fail if borrow not allowed */ uint allowed = controller.borrowAllowed(address(this), borrower, borrowAmount); if (allowed != 0) { return failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.BORROW_CONTROLLER_REJECTION, allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.BORROW_FRESHNESS_CHECK); } /* Fail gracefully if protocol has insufficient underlying cash */ if (getCashPrior() < borrowAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.BORROW_CASH_NOT_AVAILABLE); } BorrowLocalVars memory vars; /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowsNew = accountBorrows + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.accountBorrowsNew) = addUInt(vars.accountBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } (vars.mathErr, vars.totalBorrowsNew) = addUInt(totalBorrows, borrowAmount); if (vars.mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The pToken must handle variations between ERC-20 and ETH underlying. * On success, the pToken borrowAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(borrower, borrowAmount); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); return uint(Error.NO_ERROR); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint, uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowBehalfInternal(address borrower, uint repayAmount) internal nonReentrant returns (uint, uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed return (fail(Error(error), FailureInfo.REPAY_BEHALF_ACCRUE_INTEREST_FAILED), 0); } // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to return repayBorrowFresh(msg.sender, borrower, repayAmount); } struct RepayBorrowLocalVars { Error err; MathError mathErr; uint repayAmount; uint borrowerIndex; uint accountBorrows; uint accountBorrowsNew; uint totalBorrowsNew; uint actualRepayAmount; } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of undelrying tokens being returned * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function repayBorrowFresh(address payer, address borrower, uint repayAmount) internal returns (uint, uint) { /* Fail if repayBorrow not allowed */ uint allowed = controller.repayBorrowAllowed(address(this), payer, borrower, repayAmount); if (allowed != 0) { return (failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.REPAY_BORROW_CONTROLLER_REJECTION, allowed), 0); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), 0); } RepayBorrowLocalVars memory vars; /* We remember the original borrowerIndex for verification purposes */ vars.borrowerIndex = accountBorrows[borrower].interestIndex; /* We fetch the amount the borrower owes, with accumulated interest */ (vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower); if (vars.mathErr != MathError.NO_ERROR) { return (failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)), 0); } /* If repayAmount == -1, repayAmount = accountBorrows */ if (repayAmount == uint(-1)) { vars.repayAmount = vars.accountBorrows; } else { vars.repayAmount = repayAmount; } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The pToken must handle variations between ERC-20 and ETH underlying. * On success, the pToken holds an additional repayAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ vars.actualRepayAmount = doTransferIn(payer, vars.repayAmount); /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - actualRepayAmount * totalBorrowsNew = totalBorrows - actualRepayAmount */ (vars.mathErr, vars.accountBorrowsNew) = subUInt(vars.accountBorrows, vars.actualRepayAmount); require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_ACCOUNT_BORROW_BALANCE_CALCULATION_FAILED"); (vars.mathErr, vars.totalBorrowsNew) = subUInt(totalBorrows, vars.actualRepayAmount); require(vars.mathErr == MathError.NO_ERROR, "REPAY_BORROW_NEW_TOTAL_BALANCE_CALCULATION_FAILED"); /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = vars.accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = vars.totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow(payer, borrower, vars.actualRepayAmount, vars.accountBorrowsNew, vars.totalBorrowsNew); return (uint(Error.NO_ERROR), vars.actualRepayAmount); } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this pToken to be liquidated * @param pTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function liquidateBorrowInternal(address borrower, uint repayAmount, PTokenInterface pTokenCollateral) internal nonReentrant returns (uint, uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_BORROW_INTEREST_FAILED), 0); } error = pTokenCollateral.accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed return (fail(Error(error), FailureInfo.LIQUIDATE_ACCRUE_COLLATERAL_INTEREST_FAILED), 0); } // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to return liquidateBorrowFresh(msg.sender, borrower, repayAmount, pTokenCollateral); } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this pToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param pTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay * @return (uint, uint) An error code (0=success, otherwise a failure, see ErrorReporter.sol), and the actual repayment amount. */ function liquidateBorrowFresh(address liquidator, address borrower, uint repayAmount, PTokenInterface pTokenCollateral) internal returns (uint, uint) { /* Fail if liquidate not allowed */ uint allowed = controller.liquidateBorrowAllowed(address(this), address(pTokenCollateral), liquidator, borrower, repayAmount); if (allowed != 0) { return (failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.LIQUIDATE_CONTROLLER_REJECTION, allowed), 0); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_FRESHNESS_CHECK), 0); } /* Verify pTokenCollateral market's block number equals current block number */ if (pTokenCollateral.accrualBlockNumber() != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.LIQUIDATE_COLLATERAL_FRESHNESS_CHECK), 0); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return (fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_LIQUIDATOR_IS_BORROWER), 0); } /* Fail if repayAmount = 0 */ if (repayAmount == 0) { return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_ZERO), 0); } /* Fail if repayAmount = -1 */ if (repayAmount == uint(-1)) { return (fail(Error.INVALID_CLOSE_AMOUNT_REQUESTED, FailureInfo.LIQUIDATE_CLOSE_AMOUNT_IS_UINT_MAX), 0); } /* Fail if repayBorrow fails */ (uint repayBorrowError, uint actualRepayAmount) = repayBorrowFresh(liquidator, borrower, repayAmount); if (repayBorrowError != uint(Error.NO_ERROR)) { return (fail(Error(repayBorrowError), FailureInfo.LIQUIDATE_REPAY_BORROW_FRESH_FAILED), 0); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We calculate the number of collateral tokens that will be seized */ (uint amountSeizeError, uint seizeTokens) = controller.liquidateCalculateSeizeTokens(address(this), address(pTokenCollateral), actualRepayAmount); require(amountSeizeError == uint(Error.NO_ERROR), "LIQUIDATE_CONTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED"); /* Revert if borrower collateral token balance < seizeTokens */ require(pTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH"); // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call uint seizeError; if (address(pTokenCollateral) == address(this)) { seizeError = seizeInternal(address(this), liquidator, borrower, seizeTokens); } else { seizeError = pTokenCollateral.seize(liquidator, borrower, seizeTokens); } /* Revert if seize tokens fails (since we cannot be sure of side effects) */ require(seizeError == uint(Error.NO_ERROR), "token seizure failed"); /* We emit a LiquidateBorrow event */ emit LiquidateBorrow(liquidator, borrower, actualRepayAmount, address(pTokenCollateral), seizeTokens); return (uint(Error.NO_ERROR), actualRepayAmount); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another pToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed pToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of pTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize(address liquidator, address borrower, uint seizeTokens) external override nonReentrant returns (uint) { return seizeInternal(msg.sender, liquidator, borrower, seizeTokens); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another PToken. * Its absolutely critical to use msg.sender as the seizer pToken and not a parameter. * @param seizerToken The contract seizing the collateral (i.e. borrowed pToken) * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of pTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seizeInternal(address seizerToken, address liquidator, address borrower, uint seizeTokens) internal returns (uint) { /* Fail if seize not allowed */ uint allowed = controller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens); if (allowed != 0) { return failOpaque(Error.CONTROLLER_REJECTION, FailureInfo.LIQUIDATE_SEIZE_CONTROLLER_REJECTION, allowed); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { return fail(Error.INVALID_ACCOUNT_PAIR, FailureInfo.LIQUIDATE_SEIZE_LIQUIDATOR_IS_BORROWER); } MathError mathErr; uint borrowerTokensNew; uint liquidatorTokensNew; /* * We calculate the new borrower and liquidator token balances, failing on underflow/overflow: * borrowerTokensNew = accountTokens[borrower] - seizeTokens * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens */ (mathErr, borrowerTokensNew) = subUInt(accountTokens[borrower], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_DECREMENT_FAILED, uint(mathErr)); } (mathErr, liquidatorTokensNew) = addUInt(accountTokens[liquidator], seizeTokens); if (mathErr != MathError.NO_ERROR) { return failOpaque(Error.MATH_ERROR, FailureInfo.LIQUIDATE_SEIZE_BALANCE_INCREMENT_FAILED, uint(mathErr)); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accountTokens[borrower] = borrowerTokensNew; accountTokens[liquidator] = liquidatorTokensNew; /* Emit a Transfer event */ emit Transfer(borrower, liquidator, seizeTokens); return uint(Error.NO_ERROR); } /*** Admin Functions ***/ /** * @notice Sets a new controller for the market * @dev Admin function to set a new controller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setController(ControllerInterface newController) public override returns (uint) { // Check caller is admin if (msg.sender != getMyAdmin()) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_CONTROLLER_OWNER_CHECK); } return _setControllerInternal(newController); } function _setControllerInternal(ControllerInterface newController) internal returns (uint) { ControllerInterface oldController = controller; // Ensure invoke controller.isController() returns true require(newController.isController(), "marker method returned false"); // Set market's controller to newController controller = newController; // Emit NewController(oldController, newController) emit NewController(oldController, newController); return uint(Error.NO_ERROR); } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint newReserveFactorMantissa) external override nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reserve factor change failed. return fail(Error(error), FailureInfo.SET_RESERVE_FACTOR_ACCRUE_INTEREST_FAILED); } // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint newReserveFactorMantissa) internal returns (uint) { // Check caller is admin if (msg.sender != getMyAdmin()) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_RESERVE_FACTOR_ADMIN_CHECK); } // Verify market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_RESERVE_FACTOR_FRESH_CHECK); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { return fail(Error.BAD_INPUT, FailureInfo.SET_RESERVE_FACTOR_BOUNDS_CHECK); } uint oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa); return uint(Error.NO_ERROR); } /** * @notice Accrues interest and reduces reserves by transferring from msg.sender * @param addAmount Amount of addition to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _addReservesInternal(uint addAmount) internal nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed. return fail(Error(error), FailureInfo.ADD_RESERVES_ACCRUE_INTEREST_FAILED); } // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to. (error, ) = _addReservesFresh(addAmount); return error; } /** * @notice Add reserves by transferring from caller * @dev Requires fresh interest accrual * @param addAmount Amount of addition to reserves * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees */ function _addReservesFresh(uint addAmount) internal returns (uint, uint) { // totalReserves + actualAddAmount uint totalReservesNew; uint actualAddAmount; // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return (fail(Error.MARKET_NOT_FRESH, FailureInfo.ADD_RESERVES_FRESH_CHECK), actualAddAmount); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the caller and the addAmount * Note: The pToken must handle variations between ERC-20 and ETH underlying. * On success, the pToken holds an additional addAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ actualAddAmount = doTransferIn(msg.sender, addAmount); totalReservesNew = totalReserves + actualAddAmount; /* Revert on overflow */ require(totalReservesNew >= totalReserves, "add reserves unexpected overflow"); // Store reserves[n+1] = reserves[n] + actualAddAmount totalReserves = totalReservesNew; /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */ emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew); /* Return (NO_ERROR, actualAddAmount) */ return (uint(Error.NO_ERROR), actualAddAmount); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint reduceAmount) external override nonReentrant returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted reduce reserves failed. return fail(Error(error), FailureInfo.REDUCE_RESERVES_ACCRUE_INTEREST_FAILED); } // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint reduceAmount) internal returns (uint) { // totalReserves - reduceAmount uint totalReservesNew; address payable admin = getMyAdmin(); // Check caller is admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.REDUCE_RESERVES_ADMIN_CHECK); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.REDUCE_RESERVES_FRESH_CHECK); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { return fail(Error.TOKEN_INSUFFICIENT_CASH, FailureInfo.REDUCE_RESERVES_CASH_NOT_AVAILABLE); } // Check reduceAmount ≤ reserves[n] (totalReserves) if (reduceAmount > totalReserves) { return fail(Error.BAD_INPUT, FailureInfo.REDUCE_RESERVES_VALIDATION); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = totalReserves - reduceAmount; // We checked reduceAmount <= totalReserves above, so this should never revert. require(totalReservesNew <= totalReserves, "reduce reserves unexpected underflow"); // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. doTransferOut(admin, reduceAmount); emit ReservesReduced(admin, reduceAmount, totalReservesNew); return uint(Error.NO_ERROR); } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public override returns (uint) { uint error = accrueInterest(); if (error != uint(Error.NO_ERROR)) { // accrueInterest emits logs on errors, but on top of that we want to log the fact that an attempted change of interest rate model failed return fail(Error(error), FailureInfo.SET_INTEREST_RATE_MODEL_ACCRUE_INTEREST_FAILED); } // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint) { // Check caller is admin if (msg.sender != getMyAdmin()) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_INTEREST_RATE_MODEL_OWNER_CHECK); } return _setInterestRateModelFreshInternal(newInterestRateModel); } function _setInterestRateModelFreshInternal(InterestRateModel newInterestRateModel) internal returns (uint) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { return fail(Error.MARKET_NOT_FRESH, FailureInfo.SET_INTEREST_RATE_MODEL_FRESH_CHECK); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require(newInterestRateModel.isInterestRateModel(), "marker method returned false"); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel); return uint(Error.NO_ERROR); } function getMyAdmin() public view returns (address payable) { return RegistryInterface(registry).admin(); } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view virtual returns (uint); /** * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee. * This may revert due to insufficient balance or insufficient allowance. */ function doTransferIn(address from, uint amount) internal virtual returns (uint); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure tather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut(address payable to, uint amount) internal virtual; /*** Reentrancy Guard ***/ /** * @dev Prevents a contract from calling itself, directly or indirectly. */ modifier nonReentrant() { require(_notEntered, "re-entered"); _notEntered = false; _; _notEntered = true; // get a gas-refund post-Istanbul } }
pragma solidity ^0.7.4; import "./ControllerInterface.sol"; import "./InterestRateModel.sol"; import "./ProxyWithRegistry.sol"; contract PTokenStorage is ProxyWithRegistryStorage { /** * @dev Guard variable for re-entrancy checks */ bool internal _notEntered; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint8 public decimals; /** * @dev Maximum borrow rate that can ever be applied (.0005% / block) */ uint internal constant borrowRateMaxMantissa = 0.0005e16; /** * @dev Maximum fraction of interest that can be set aside for reserves */ uint internal constant reserveFactorMaxMantissa = 1e18; /** * @notice Contract which oversees inter-pToken operations */ ControllerInterface public controller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; /** * @dev Initial exchange rate used when minting the first PTokens (used when totalSupply = 0) */ uint internal initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint public reserveFactorMantissa; /** * @notice Block number that interest was last accrued at */ uint public accrualBlockNumber; /** * @notice Accumulator of the total earned interest rate since the opening of the market */ uint public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint public totalReserves; /** * @notice Total number of tokens in circulation */ uint public totalSupply; /** * @dev Official record of token balances for each account */ mapping (address => uint) internal accountTokens; /** * @dev Approved token transfer amounts on behalf of others */ mapping (address => mapping (address => uint)) internal transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint principal; uint interestIndex; } /** * @dev Mapping of account addresses to outstanding borrow balances */ mapping(address => BorrowSnapshot) internal accountBorrows; } abstract contract PTokenInterface is PTokenStorage { /** * @notice Indicator that this is a PToken contract (for inspection) */ bool public constant isPToken = true; /*** Market Events ***/ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint cashPrior, uint interestAccumulated, uint borrowIndex, uint totalBorrows, uint totalReserves); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint mintAmount, uint mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint redeemAmount, uint redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address pTokenCollateral, uint seizeTokens); /*** Admin Events ***/ /** * @notice Event emitted when controller is changed */ event NewController(ControllerInterface oldController, ControllerInterface newController); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa); /** * @notice Event emitted when the reserves are added */ event ReservesAdded(address benefactor, uint addAmount, uint newTotalReserves); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves); /** * @notice EIP20 Transfer event */ event Transfer(address indexed from, address indexed to, uint amount); /** * @notice EIP20 Approval event */ event Approval(address indexed owner, address indexed spender, uint amount); /*** User Interface ***/ function transfer(address dst, uint amount) external virtual returns (bool); function transferFrom(address src, address dst, uint amount) external virtual returns (bool); function approve(address spender, uint amount) external virtual returns (bool); function allowance(address owner, address spender) external view virtual returns (uint); function balanceOf(address owner) external view virtual returns (uint); function balanceOfUnderlying(address owner) external virtual returns (uint); function getAccountSnapshot(address account) external view virtual returns (uint, uint, uint, uint); function borrowRatePerBlock() external view virtual returns (uint); function supplyRatePerBlock() external view virtual returns (uint); function totalBorrowsCurrent() external virtual returns (uint); function borrowBalanceCurrent(address account) external virtual returns (uint); function borrowBalanceStored(address account) public view virtual returns (uint); function exchangeRateCurrent() public virtual returns (uint); function exchangeRateStored() public view virtual returns (uint); function getCash() external view virtual returns (uint); function accrueInterest() public virtual returns (uint); function seize(address liquidator, address borrower, uint seizeTokens) external virtual returns (uint); /*** Admin Functions ***/ function _setController(ControllerInterface newController) public virtual returns (uint); function _setReserveFactor(uint newReserveFactorMantissa) external virtual returns (uint); function _reduceReserves(uint reduceAmount) external virtual returns (uint); function _setInterestRateModel(InterestRateModel newInterestRateModel) public virtual returns (uint); } contract PErc20Storage { /** * @notice Underlying asset for this PToken */ address public underlying; } abstract contract PErc20Interface is PErc20Storage { /*** User Interface ***/ function mint(uint mintAmount) external virtual returns (uint); function redeem(uint redeemTokens) external virtual returns (uint); function redeemUnderlying(uint redeemAmount) external virtual returns (uint); function borrow(uint borrowAmount) external virtual returns (uint); function repayBorrow(uint repayAmount) external virtual returns (uint); function repayBorrowBehalf(address borrower, uint repayAmount) external virtual returns (uint); function liquidateBorrow(address borrower, uint repayAmount, PTokenInterface pTokenCollateral) external virtual returns (uint); /*** Admin Functions ***/ function _addReserves(uint addAmount) external virtual returns (uint); } contract PPIEStorage { /// @notice A record of each accounts delegate mapping (address => address) public delegates; /// @notice A checkpoint for marking number of votes from a given block struct Checkpoint { uint32 fromBlock; uint96 votes; } /// @notice A record of votes checkpoints for each account, by index mapping (address => mapping (uint32 => Checkpoint)) public checkpoints; /// @notice The number of checkpoints for each account mapping (address => uint32) public numCheckpoints; /// @notice The EIP-712 typehash for the contract's domain bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)"); /// @notice The EIP-712 typehash for the delegation struct used by the contract bytes32 public constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @notice A record of states for signing / validating signatures mapping (address => uint) public nonces; } abstract contract PPIEInterface is PPIEStorage { /// @notice An event thats emitted when an account changes its delegate event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /// @notice An event thats emitted when a delegate account's vote balance changes event DelegateVotesChanged(address indexed delegate, uint previousBalance, uint newBalance); function delegate(address delegatee) external virtual; function delegateBySig(address delegatee, uint nonce, uint expiry, uint8 v, bytes32 r, bytes32 s) external virtual; function getCurrentVotes(address account) external view virtual returns (uint96); function getPriorVotes(address account, uint blockNumber) external view virtual returns (uint96); }
pragma solidity ^0.7.4; abstract contract PriceOracle { /// @notice Indicator that this is a PriceOracle contract (for inspection) bool public constant isPriceOracle = true; event PriceUpdated(address asset, uint price); /** * @notice Get the underlying price of a pToken asset * @param pToken The pToken to get the underlying price of * @return The underlying asset price mantissa (scaled by 1e18). * Zero means the price is unavailable. */ function getUnderlyingPrice(address pToken) external view virtual returns (uint); function updateUnderlyingPrice(address pToken) external virtual returns (uint); }
pragma solidity ^0.7.4; import "./RegistryInterface.sol"; contract ProxyWithRegistryStorage { /** * @notice Address of the registry contract */ address public registry; } abstract contract ProxyWithRegistryInterface is ProxyWithRegistryStorage { function _setRegistry(address _registry) internal virtual; function _pTokenImplementation() internal view virtual returns (address); } contract ProxyWithRegistry is ProxyWithRegistryInterface { /** * Returns actual address of the implementation contract from current registry * @return registry Address of the registry */ function _pTokenImplementation() internal view override returns (address) { return RegistryInterface(registry).pTokenImplementation(); } function _setRegistry(address _registry) internal override { registry = _registry; } } contract ImplementationStorage { address public implementation; function _setImplementation(address implementation_) internal { implementation = implementation_; } }
pragma solidity ^0.7.4; interface RegistryInterface { /** * Returns admin address for cToken contracts * @return admin address */ function admin() external view returns (address payable); /** * Returns address of actual PToken implementation contract * @return Address of contract */ function pTokenImplementation() external view returns (address); function addPToken(address underlying, address pToken) external returns(uint); function addPETH(address pETH_) external returns(uint); function addPPIE(address pPIE_) external returns(uint); }
pragma solidity ^0.7.4; import "./ErrorReporter.sol"; import "./ControllerStorage.sol"; /** * @title ControllerCore * @dev Storage for the controller is at this address, while execution is delegated to the `controllerImplementation`. * PTokens should reference this contract as their controller. */ contract Unitroller is UnitrollerAdminStorage, ControllerErrorReporter { /** * @notice Emitted when pendingControllerImplementation is changed */ event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation); /** * @notice Emitted when pendingControllerImplementation is accepted, which means controller implementation is updated */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); constructor() { // Set admin to caller admin = msg.sender; } /*** Admin Functions ***/ function _setPendingImplementation(address newPendingImplementation) public returns (uint) { if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK); } address oldPendingImplementation = pendingControllerImplementation; pendingControllerImplementation = newPendingImplementation; emit NewPendingImplementation(oldPendingImplementation, pendingControllerImplementation); return uint(Error.NO_ERROR); } /** * @notice Accepts new implementation of controller. msg.sender must be pendingImplementation * @dev Admin function for new implementation to accept it's role as implementation * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptImplementation() public returns (uint) { // Check caller is pendingImplementation and pendingImplementation ≠ address(0) if (msg.sender != pendingControllerImplementation || pendingControllerImplementation == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK); } // Save current values for inclusion in log address oldImplementation = controllerImplementation; address oldPendingImplementation = pendingControllerImplementation; controllerImplementation = pendingControllerImplementation; pendingControllerImplementation = address(0); emit NewImplementation(oldImplementation, controllerImplementation); emit NewPendingImplementation(oldPendingImplementation, pendingControllerImplementation); return uint(Error.NO_ERROR); } /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address newPendingAdmin) public returns (uint) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() public returns (uint) { // Check caller is pendingAdmin if (msg.sender != pendingAdmin) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint(Error.NO_ERROR); } /** * @dev Delegates execution to an implementation contract. * It returns to the external caller whatever the implementation returns * or forwards reverts. */ fallback() payable external { // delegate all other functions to current implementation (bool success, ) = controllerImplementation.delegatecall(msg.data); assembly { let free_mem_ptr := mload(0x40) returndatacopy(free_mem_ptr, 0, returndatasize()) switch success case 0 { revert(free_mem_ptr, returndatasize()) } default { return(free_mem_ptr, returndatasize()) } } } }
{ "evmVersion": "istanbul", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
[{"inputs":[{"internalType":"address","name":"_controller","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"allMarkets","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"},{"internalType":"address[]","name":"pTokens","type":"address[]"}],"name":"calcClaimPie","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"}],"name":"calcClaimPie","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"},{"internalType":"address[]","name":"pTokens","type":"address[]"}],"name":"calcClaimPieWithoutAccrued","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"}],"name":"checkClaimPieMarkets","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"holder","type":"address"},{"internalType":"address[]","name":"pTokens","type":"address[]"}],"name":"checkClaimPieMarkets","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"controller","outputs":[{"internalType":"contract Controller","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBlockNumber","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pToken","type":"address"},{"components":[{"internalType":"uint256","name":"mantissa","type":"uint256"}],"internalType":"struct Exponential.Exp","name":"marketBorrowIndex","type":"tuple"}],"name":"updatePieBorrowIndex","outputs":[{"components":[{"internalType":"uint256","name":"mantissa","type":"uint256"}],"internalType":"struct Exponential.Double","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pToken","type":"address"}],"name":"updatePieSupplyIndex","outputs":[{"components":[{"internalType":"uint256","name":"mantissa","type":"uint256"}],"internalType":"struct Exponential.Double","name":"","type":"tuple"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50604051611a7d380380611a7d83398101604081905261002f91610054565b600080546001600160a01b0319166001600160a01b0392909216919091179055610082565b600060208284031215610065578081fd5b81516001600160a01b038116811461007b578182fd5b9392505050565b6119ec806100916000396000f3fe608060405234801561001057600080fd5b506004361061009e5760003560e01c8063a161227211610066578063a16122721461011c578063b33221a51461012f578063ee00ee6114610142578063f378e93d14610155578063f77c4791146101685761009e565b806322284c96146100a3578063375a7cba146100cc57806342cbb15c146100d4578063474c796d146100e95780635d4dde2214610109575b600080fd5b6100b66100b1366004611694565b61017d565b6040516100c391906118fc565b60405180910390f35b6100b6610213565b6100dc610298565b6040516100c39190611953565b6100fc6100f7366004611694565b610327565b6040516100c39190611949565b6100dc6101173660046116b0565b610574565b6100dc61012a3660046116b0565b6109ba565b6100fc61013d366004611763565b610a59565b6100b66101503660046116b0565b610cb0565b6100dc610163366004611694565b61123f565b6101706112cd565b6040516100c391906118ce565b606061020b8260008054906101000a90046001600160a01b03166001600160a01b031663b0772d0b6040518163ffffffff1660e01b815260040160006040518083038186803b1580156101cf57600080fd5b505afa1580156101e3573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261015091908101906117c5565b90505b919050565b600080546040805163b0772d0b60e01b815290516060936001600160a01b039093169263b0772d0b9260048082019391829003018186803b15801561025757600080fd5b505afa15801561026b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261029391908101906117c5565b905090565b60008060009054906101000a90046001600160a01b03166001600160a01b03166342cbb15c6040518163ffffffff1660e01b815260040160206040518083038186803b1580156102e757600080fd5b505afa1580156102fb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061031f91906118b6565b600101905090565b61032f61166a565b6000805460405163564b101560e01b815282916001600160a01b03169063564b1015906103609087906004016118ce565b604080518083038186803b15801561037757600080fd5b505afa15801561038b573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103af9190611878565b915091506103bb61166a565b50604080516020810182526001600160e01b03841681526000805492516319fff01d60e21b8152919290916001600160a01b03909116906367ffc074906104069089906004016118ce565b60206040518083038186803b15801561041e57600080fd5b505afa158015610432573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061045691906118b6565b90506000610462610298565b90506000610476828663ffffffff166112dc565b90506000811180156104885750600083115b15610568576000886001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156104c857600080fd5b505afa1580156104dc573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061050091906118b6565b9050600061050e838661131d565b905061051861166a565b60008311610535576040518060200160405280600081525061053f565b61053f828461135f565b905061056260405180602001604052808b6001600160e01b03168152508261139d565b96505050505b50919695505050505050565b60008060005b83518110156109b257600084828151811061059157fe5b602002602001015190506105a361166a565b6040518060200160405280836001600160a01b031663aa5af0fd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156105e757600080fd5b505afa1580156105fb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061061f91906118b6565b9052905061062b61166a565b6106358383610a59565b905061063f61166a565b604080516020810191829052600054632319630d60e21b9092529081906001600160a01b0316638c658c34610678888e602486016118e2565b60206040518083038186803b15801561069057600080fd5b505afa1580156106a4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106c891906118b6565b905280519091501561078f576106dc61166a565b6106e683836113c2565b9050600061076f866001600160a01b03166395dd91938d6040518263ffffffff1660e01b815260040161071991906118ce565b60206040518083038186803b15801561073157600080fd5b505afa158015610745573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061076991906118b6565b866113e7565b9050600061077d8284611405565b90506107898982611434565b98505050505b61079761166a565b6107a085610327565b90506107aa61166a565b604051806020016040528060008054906101000a90046001600160a01b03166001600160a01b031663e1642f36898f6040518363ffffffff1660e01b81526004016107f69291906118e2565b60206040518083038186803b15801561080e57600080fd5b505afa158015610822573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061084691906118b6565b9052805190915015801561085a5750815115155b156108ef5760008054906101000a90046001600160a01b03166001600160a01b031663d3df508c6040518163ffffffff1660e01b815260040160206040518083038186803b1580156108ab57600080fd5b505afa1580156108bf573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108e3919061185e565b6001600160e01b031681525b6108f761166a565b61090183836113c2565b90506000876001600160a01b03166370a082318e6040518263ffffffff1660e01b815260040161093191906118ce565b60206040518083038186803b15801561094957600080fd5b505afa15801561095d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061098191906118b6565b9050600061098f8284611405565b905061099b8b82611434565b9a50506001909801975061057a9650505050505050565b509392505050565b6000806109c78484610574565b6000805460405163091da43b60e11b815292935090916001600160a01b039091169063123b4876906109fd9088906004016118ce565b60206040518083038186803b158015610a1557600080fd5b505afa158015610a29573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a4d91906118b6565b91909101949350505050565b610a6161166a565b6000805460405163087ef9c360e41b815282916001600160a01b0316906387ef9c3090610a929088906004016118ce565b604080518083038186803b158015610aa957600080fd5b505afa158015610abd573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ae19190611878565b91509150610aed61166a565b50604080516020810182526001600160e01b03841681526000805492516319fff01d60e21b8152919290916001600160a01b03909116906367ffc07490610b38908a906004016118ce565b60206040518083038186803b158015610b5057600080fd5b505afa158015610b64573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b8891906118b6565b90506000610b94610298565b90506000610ba8828663ffffffff166112dc565b9050600081118015610bba5750600083115b15610ca3576000610c3b8a6001600160a01b03166347bd37186040518163ffffffff1660e01b815260040160206040518083038186803b158015610bfd57600080fd5b505afa158015610c11573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c3591906118b6565b8a6113e7565b90506000610c49838661131d565b9050610c5361166a565b60008311610c705760405180602001604052806000815250610c7a565b610c7a828461135f565b9050610c9d60405180602001604052808b6001600160e01b03168152508261139d565b96505050505b5091979650505050505050565b606080825167ffffffffffffffff81118015610ccb57600080fd5b50604051908082528060200260200182016040528015610cf5578160200160208202803683370190505b5090506000805b84518110156111a3576000610d0f61166a565b6040518060200160405280888581518110610d2657fe5b60200260200101516001600160a01b031663aa5af0fd6040518163ffffffff1660e01b815260040160206040518083038186803b158015610d6657600080fd5b505afa158015610d7a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d9e91906118b6565b90529050610daa61166a565b610dc7888581518110610db957fe5b602002602001015183610a59565b9050610dd161166a565b60408051602081019091526000548a5182916001600160a01b031690638c658c34908d908a908110610dff57fe5b60200260200101518e6040518363ffffffff1660e01b8152600401610e259291906118e2565b60206040518083038186803b158015610e3d57600080fd5b505afa158015610e51573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e7591906118b6565b9052805190915015610f34576000610f1b8a8781518110610e9257fe5b60200260200101516001600160a01b03166395dd91938d6040518263ffffffff1660e01b8152600401610ec591906118ce565b60206040518083038186803b158015610edd57600080fd5b505afa158015610ef1573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f1591906118b6565b856113e7565b9050610f3081610f2b85856113c2565b611405565b9450505b610f50898681518110610f4357fe5b6020026020010151610327565b9150610f5a61166a565b60408051602081019091526000548b5182916001600160a01b03169063e1642f36908e908b908110610f8857fe5b60200260200101518f6040518363ffffffff1660e01b8152600401610fae9291906118e2565b60206040518083038186803b158015610fc657600080fd5b505afa158015610fda573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ffe91906118b6565b905280519091501580156110125750825115155b156110a75760008054906101000a90046001600160a01b03166001600160a01b031663d3df508c6040518163ffffffff1660e01b815260040160206040518083038186803b15801561106357600080fd5b505afa158015611077573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061109b919061185e565b6001600160e01b031681525b60008a87815181106110b557fe5b60200260200101516001600160a01b03166370a082318d6040518263ffffffff1660e01b81526004016110e891906118ce565b60206040518083038186803b15801561110057600080fd5b505afa158015611114573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061113891906118b6565b905061114881610f2b86856113c2565b909501948515611191578a878151811061115e57fe5b602002602001015189898151811061117257fe5b6001600160a01b03909216602092830291909101909101526001909701965b505060019094019350610cfc92505050565b5060608167ffffffffffffffff811180156111bd57600080fd5b506040519080825280602002602001820160405280156111e7578160200160208202803683370190505b50905060005b828110156112355783818151811061120157fe5b602002602001015182828151811061121557fe5b6001600160a01b03909216602092830291909101909101526001016111ed565b5095945050505050565b600061020b8260008054906101000a90046001600160a01b03166001600160a01b031663b0772d0b6040518163ffffffff1660e01b815260040160006040518083038186803b15801561129157600080fd5b505afa1580156112a5573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f1916820160405261012a91908101906117c5565b6000546001600160a01b031681565b60006113168383604051806040016040528060158152602001747375627472616374696f6e20756e646572666c6f7760581b81525061146a565b9392505050565b600061131683836040518060400160405280601781526020017f6d756c7469706c69636174696f6e206f766572666c6f77000000000000000000815250611501565b61136761166a565b604051806020016040528061139461138e866ec097ce7bc90715b34b9f100000000061131d565b85611580565b90529392505050565b6113a561166a565b604051806020016040528061139485600001518560000151611434565b6113ca61166a565b6040518060200160405280611394856000015185600001516112dc565b60006113166113fe84670de0b6b3a764000061131d565b8351611580565b60006ec097ce7bc90715b34b9f100000000061142584846000015161131d565b8161142c57fe5b049392505050565b60006113168383604051806040016040528060118152602001706164646974696f6e206f766572666c6f7760781b8152506115b3565b600081848411156114f95760405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b838110156114be5781810151838201526020016114a6565b50505050905090810190601f1680156114eb5780820380516001836020036101000a031916815260200191505b509250505060405180910390fd5b505050900390565b600083158061150e575082155b1561151b57506000611316565b8383028385828161152857fe5b041483906115775760405162461bcd60e51b81526020600482018181528351602484015283519092839260449091019190850190808383600083156114be5781810151838201526020016114a6565b50949350505050565b600061131683836040518060400160405280600e81526020016d646976696465206279207a65726f60901b815250611608565b600083830182858210156115775760405162461bcd60e51b81526020600482018181528351602484015283519092839260449091019190850190808383600083156114be5781810151838201526020016114a6565b600081836116575760405162461bcd60e51b81526020600482018181528351602484015283519092839260449091019190850190808383600083156114be5781810151838201526020016114a6565b5082848161166157fe5b04949350505050565b6040518060200160405280600081525090565b80516001600160e01b038116811461020e57600080fd5b6000602082840312156116a5578081fd5b81356113168161199e565b600080604083850312156116c2578081fd5b82356116cd8161199e565b915060208381013567ffffffffffffffff8111156116e9578283fd5b8401601f810186136116f9578283fd5b803561170c61170782611980565b61195c565b81815283810190838501858402850186018a1015611728578687fd5b8694505b8385101561175357803561173f8161199e565b83526001949094019391850191850161172c565b5080955050505050509250929050565b6000808284036040811215611776578283fd5b83356117818161199e565b92506020601f1982011215611794578182fd5b506040516020810181811067ffffffffffffffff821117156117b257fe5b6040526020939093013583525092909150565b600060208083850312156117d7578182fd5b825167ffffffffffffffff8111156117ed578283fd5b8301601f810185136117fd578283fd5b805161180b61170782611980565b8181528381019083850185840285018601891015611827578687fd5b8694505b8385101561185257805161183e8161199e565b83526001949094019391850191850161182b565b50979650505050505050565b60006020828403121561186f578081fd5b6113168261167d565b6000806040838503121561188a578182fd5b6118938361167d565b9150602083015163ffffffff811681146118ab578182fd5b809150509250929050565b6000602082840312156118c7578081fd5b5051919050565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b6020808252825182820181905260009190848201906040850190845b8181101561193d5783516001600160a01b031683529284019291840191600101611918565b50909695505050505050565b9051815260200190565b90815260200190565b60405181810167ffffffffffffffff8111828210171561197857fe5b604052919050565b600067ffffffffffffffff82111561199457fe5b5060209081020190565b6001600160a01b03811681146119b357600080fd5b5056fea264697066735822122003d128d89a78b1459fd539667ad1e5ca3353cbbdbe75bdbb18121ac652702d4364736f6c63430007040033000000000000000000000000d204be259f703503ef2ea03eb401ce6e07254d96
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000d204be259f703503ef2ea03eb401ce6e07254d96
-----Decoded View---------------
Arg [0] : _controller (address): 0xd204be259f703503ef2ea03eb401ce6e07254d96
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000d204be259f703503ef2ea03eb401ce6e07254d96
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.