Contract 0x0F3e0c4218b7b0108a3643cFe9D3ec0d4F57c54e 9

Contract Overview

Balance:
0 Ether
Txn Hash
Method
Block
From
To
Value
0xdad102c30e179a335238e60afc0790434c32fa0ff98e903cffc9ca44566391ea0x2b63014096520542021-11-16 11:51:11230 days 11 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00011818 1.50000001
0x79551593b135e5211cc35e77ad000f924c4eb8ad8859f50f9d85f00c820fbc56Create Distribut...96520512021-11-16 11:50:26230 days 11 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00031213 2.50000001
0xe4fe45896a9229067cd87a08acf5324d834718e208561575d77d63ad4706542c0x2b63014096520222021-11-16 11:43:09230 days 11 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00011818 1.50000001
0xe9659f8758b1df9ee5c2242f1c07ba0d7f2a885e572dff6852a1bd38d785fde9Create Distribut...96520142021-11-16 11:41:08230 days 11 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00031213 2.5
0x5a3d59a23176e17dc4d367d688362e273d902e39266268a8bc956f602f10caceCreate Distribut...96520032021-11-16 11:38:23230 days 11 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00006356 2.50000001
0x8fa0ed5dc76f284336ce0d9e5f7f328678622d3a337112ed1af89f7c143986670x2b63014096519862021-11-16 11:34:08230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00014381 1.5
0x98d162f9b1749de02ccb0a2ed5ef8dca40fd3d29fa49473f5e1e7af992e430faCreate Distribut...96519702021-11-16 11:30:08230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00044891 2.5
0xedbec6c21e56f18b223c5a6409ff82b69dcc430e235036f83243f0f245f7ab28Create Distribut...96519442021-11-16 11:23:38230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00007919 2.50000001
0x786b0ba8cbc02c0bb6ac959c390a35293dbb36ced94a0c5c07aa0db086d5c14eCreate Distribut...96519332021-11-16 11:20:52230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00007913 2.50000001
0x923c723f7f145c05b08c624eca8fa3cb864028c20d578c4c9341129de36266e7Create Distribut...96519182021-11-16 11:17:06230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00007913 2.50000001
0xd373104e8bfb7ec3218113f3f0fae0f41c5b201801381185a5a15550eb432fd7Create Distribut...96518972021-11-16 11:11:51230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00007913 2.5
0x08b112053fbb178a23f4f9e7cd4f758e406b12ade5c051b2a4132a01b3282123Create Distribut...96518732021-11-16 11:05:51230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.0000796 2.5
0x5deaa01399748bbfd523a746c793568ec34c519a4d01d63743d08ffa1494e49dCreate Distribut...96518662021-11-16 11:04:06230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.0000796 2.5
0x000d6e963f0243777dd7b027d1b4cb1c172410ca4dd59bd56e05c389ae409cd6Create Distribut...96518382021-11-16 10:57:05230 days 12 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.0000796 2.5
0x53db65c023a4882ee6ac7ecd97eeb86eb1db1f8e8b662c66640a39048cacdaaaCreate Distribut...96477392021-11-15 17:51:09231 days 5 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.0000796 2.5
0xc6782726cc4b06f8bd7c3ca70f18e056052bd4b9a60de6d9d22e53c3897e8744Create Distribut...96477152021-11-15 17:45:09231 days 5 hrs ago0x16e9b2b8a2c92e98fabd8f9b08210f674f570059 IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00003164 1
0x446c709cf2c88abe63e2b1be1cf55571eaff6da7a013fe0c4f7e21f2caff0d7e0x2b63014096118302021-11-09 12:04:49237 days 11 hrs ago0x22f5413c075ccd56d575a54763831c4c27a37bdb IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00016815 1.50000001
0x7b9d74ac79309d9694be139a7efb39e303b08e52a89aa3d9d6bd39ca05bde4ba0x2b63014096118092021-11-09 11:59:33237 days 11 hrs ago0x8830ac7af80bbd1f2c040a5b135ff0d8e080224d IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00014384 1.50000001
0x6e1c4eb7da15829841ddfe3027de1c31598c9be1a55ad56e22c0e335a400375dCreate Distribut...96116582021-11-09 11:21:48237 days 12 hrs ago0x8830ac7af80bbd1f2c040a5b135ff0d8e080224d IN  0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e0 Ether0.00044891 2.50000001
0x5a2b02f1201543e4c7c7a654a0d89a1a80aba1e3e54332615101694f96a271180x60a0604094716632021-10-15 21:47:19262 days 1 hr ago0x3d64fb8a2ffd08c186e8060aa57c8011d8b999cc IN  Create: MerkleOrchard0 Ether0.001431881
[ Download CSV Export 
Latest 25 internal transaction
Parent Txn Hash Block From To Value
0xdad102c30e179a335238e60afc0790434c32fa0ff98e903cffc9ca44566391ea96520542021-11-16 11:51:11230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x79551593b135e5211cc35e77ad000f924c4eb8ad8859f50f9d85f00c820fbc5696520512021-11-16 11:50:26230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x79551593b135e5211cc35e77ad000f924c4eb8ad8859f50f9d85f00c820fbc5696520512021-11-16 11:50:26230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0x79551593b135e5211cc35e77ad000f924c4eb8ad8859f50f9d85f00c820fbc5696520512021-11-16 11:50:26230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0xe4fe45896a9229067cd87a08acf5324d834718e208561575d77d63ad4706542c96520222021-11-16 11:43:09230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0xe9659f8758b1df9ee5c2242f1c07ba0d7f2a885e572dff6852a1bd38d785fde996520142021-11-16 11:41:08230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0xe9659f8758b1df9ee5c2242f1c07ba0d7f2a885e572dff6852a1bd38d785fde996520142021-11-16 11:41:08230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0xe9659f8758b1df9ee5c2242f1c07ba0d7f2a885e572dff6852a1bd38d785fde996520142021-11-16 11:41:08230 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0x8fa0ed5dc76f284336ce0d9e5f7f328678622d3a337112ed1af89f7c1439866796519862021-11-16 11:34:08230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x98d162f9b1749de02ccb0a2ed5ef8dca40fd3d29fa49473f5e1e7af992e430fa96519702021-11-16 11:30:08230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x98d162f9b1749de02ccb0a2ed5ef8dca40fd3d29fa49473f5e1e7af992e430fa96519702021-11-16 11:30:08230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0x98d162f9b1749de02ccb0a2ed5ef8dca40fd3d29fa49473f5e1e7af992e430fa96519702021-11-16 11:30:08230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x1c29b0a1dc3344a9c33c484316c59743501227320 Ether
0xedbec6c21e56f18b223c5a6409ff82b69dcc430e235036f83243f0f245f7ab2896519442021-11-16 11:23:38230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x786b0ba8cbc02c0bb6ac959c390a35293dbb36ced94a0c5c07aa0db086d5c14e96519332021-11-16 11:20:52230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x923c723f7f145c05b08c624eca8fa3cb864028c20d578c4c9341129de36266e796519182021-11-16 11:17:06230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0xd373104e8bfb7ec3218113f3f0fae0f41c5b201801381185a5a15550eb432fd796518972021-11-16 11:11:51230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x08b112053fbb178a23f4f9e7cd4f758e406b12ade5c051b2a4132a01b328212396518732021-11-16 11:05:51230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x5deaa01399748bbfd523a746c793568ec34c519a4d01d63743d08ffa1494e49d96518662021-11-16 11:04:06230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x000d6e963f0243777dd7b027d1b4cb1c172410ca4dd59bd56e05c389ae409cd696518382021-11-16 10:57:05230 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x53db65c023a4882ee6ac7ecd97eeb86eb1db1f8e8b662c66640a39048cacdaaa96477392021-11-15 17:51:09231 days 5 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0xc6782726cc4b06f8bd7c3ca70f18e056052bd4b9a60de6d9d22e53c3897e874496477152021-11-15 17:45:09231 days 5 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
0x446c709cf2c88abe63e2b1be1cf55571eaff6da7a013fe0c4f7e21f2caff0d7e96118302021-11-09 12:04:49237 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x7b9d74ac79309d9694be139a7efb39e303b08e52a89aa3d9d6bd39ca05bde4ba96118092021-11-09 11:59:33237 days 11 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x6e1c4eb7da15829841ddfe3027de1c31598c9be1a55ad56e22c0e335a400375d96116582021-11-09 11:21:48237 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0xba12222222228d8ba445958a75a0704d566bf2c80 Ether
0x6e1c4eb7da15829841ddfe3027de1c31598c9be1a55ad56e22c0e335a400375d96116582021-11-09 11:21:48237 days 12 hrs ago 0x0f3e0c4218b7b0108a3643cfe9d3ec0d4f57c54e 0x2189d3c2f29d3a7bc207ad5efa3d9847035e44690 Ether
[ Download CSV Export 
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MerkleOrchard

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 9999 runs

Other Settings:
default evmVersion
File 1 of 51 : Exiter.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";
import "@balancer-labs/v2-pool-weighted/contracts/BaseWeightedPool.sol";

import "./PoolTokenCache.sol";
import "./interfaces/IDistributorCallback.sol";

contract Exiter is PoolTokenCache, IDistributorCallback {
    constructor(IVault _vault) PoolTokenCache(_vault) {
        // solhint-disable-previous-line no-empty-blocks
    }

    struct CallbackParams {
        address[] pools;
        address payable recipient;
    }

    /**
     * @notice Exits specified pool with all bpt
     * @param callbackData are the encoded function arguments:
     * recipient - the recipient of the pool tokens
     * pools - The pools to exit from (addresses)
     */
    function distributorCallback(bytes calldata callbackData) external override {
        CallbackParams memory params = abi.decode(callbackData, (CallbackParams));

        for (uint256 p; p < params.pools.length; p++) {
            address poolAddress = params.pools[p];

            IBasePool poolContract = IBasePool(poolAddress);
            bytes32 poolId = poolContract.getPoolId();
            ensurePoolTokenSetSaved(poolId);

            IERC20 pool = IERC20(poolAddress);
            _exitPool(pool, poolId, params.recipient);
        }
    }

    /**
     * @notice Exits the pool
     * Exiting to a single token would look like:
     * bytes memory userData = abi.encode(
     * BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
     * bptBalance,
     * tokenIndexOut
     * );
     */
    function _exitPool(
        IERC20 pool,
        bytes32 poolId,
        address payable recipient
    ) internal {
        IAsset[] memory assets = _getAssets(poolId);
        uint256[] memory minAmountsOut = new uint256[](assets.length);

        uint256 bptAmountIn = pool.balanceOf(address(this));

        bytes memory userData = abi.encode(BaseWeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT, bptAmountIn);
        bool toInternalBalance = false;

        IVault.ExitPoolRequest memory request = IVault.ExitPoolRequest(
            assets,
            minAmountsOut,
            userData,
            toInternalBalance
        );
        vault.exitPool(poolId, address(this), recipient, request);
    }
}

File 2 of 51 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol";

import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 3 of 51 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `balances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `balances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    function getPoolId() external view returns (bytes32);
}

File 4 of 51 : BaseWeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";

import "./WeightedMath.sol";
import "./WeightedPoolUserDataHelpers.sol";

/**
 * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of
 * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic
 *  based on local or external logic.
 */
abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool {
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;

    uint256 private _lastInvariant;

    // For backwards compatibility, make sure new join and exit kinds are added at the end of the enum.

    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind {
        EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
        EXACT_BPT_IN_FOR_TOKENS_OUT,
        BPT_IN_FOR_EXACT_TOKENS_OUT,
        MANAGEMENT_FEE_TOKENS_OUT // for InvestmentPool
    }

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BasePool(
            vault,
            // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or
            // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free
            // gas savings.
            tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
            name,
            symbol,
            tokens,
            assetManagers,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Virtual functions

    /**
     * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE.
     */
    function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens.
     */
    function _getNormalizedWeights() internal view virtual returns (uint256[] memory);

    /**
     * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token
     * with the highest weight.
     */
    function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256);

    function getLastInvariant() public view virtual returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances, _scalingFactors());

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _getNormalizedWeights();
    }

    // Base Pool handlers

    // Swap

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                _getNormalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _getNormalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    // Initialize

    function _onInitializePool(
        bytes32,
        address,
        address,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
        // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
        // initialization in this case.

        JoinKind kind = userData.joinKind();
        _require(kind == JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
        _upscaleArray(amountsIn, scalingFactors);

        (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens());

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    // Join

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // All joins are disabled while the contract is paused.

        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            maxWeightTokenIndex,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(
            balances,
            normalizedWeights,
            scalingFactors,
            userData
        );

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        JoinKind kind = userData.joinKind();

        if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData);
        } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else if (kind == JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);

        _upscaleArray(amountsIn, scalingFactors);

        (uint256 bptAmountOut, uint256[] memory swapFees) = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFees is already upscaled
        _processSwapFeeAmounts(swapFees);

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountIn, uint256 swapFee) = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        // Note that swapFee is already upscaled
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We join in a single token, so we initialize amountsIn with zeros
        uint256[] memory amountsIn = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsIn[tokenIndex] = amountIn;

        return (bptAmountOut, amountsIn);
    }

    function _joinAllTokensInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        // Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.

        uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(
            balances,
            bptAmountOut,
            totalSupply()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex();

        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        if (_isNotPaused()) {
            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                maxWeightTokenIndex,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
            // reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else if (kind == ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        (uint256 amountOut, uint256 swapFee) = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmount(tokenIndex, swapFee);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](_getTotalTokens());
        // And then assign the result to the selected token
        amountsOut[tokenIndex] = amountOut;

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
        _upscaleArray(amountsOut, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory swapFees) = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        // This is an exceptional situation in which the fee is charged on a token out instead of a token in.
        // Note that swapFee is already upscaled.
        _processSwapFeeAmounts(swapFees);

        return (bptAmountIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 maxWeightTokenIndex,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[maxWeightTokenIndex],
            normalizedWeights[maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All
     * amounts are expected to be upscaled.
     */
    function _invariantAfterJoin(
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function _invariantAfterExit(
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply());
    }
}

File 5 of 51 : PoolTokenCache.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableSet.sol";

contract PoolTokenCache {
    using EnumerableSet for EnumerableSet.AddressSet;

    IVault public immutable vault;

    constructor(IVault _vault) {
        vault = _vault;
    }

    mapping(bytes32 => EnumerableSet.AddressSet) private _poolTokenSets;
    mapping(bytes32 => bool) private _poolTokenSetSaved;

    function savePoolTokenSet(bytes32 poolId) public {
        (IERC20[] memory poolTokens, , ) = vault.getPoolTokens(poolId);

        if (_poolTokenSetSaved[poolId]) {
            // Purge potentially stale cached data
            uint256 numTokens = _poolTokenSets[poolId].length();

            // Clear the set by removing the last element n times, which uses less gas than removing elements in any
            // other order.
            for (uint256 i = 0; i < numTokens; i++) {
                uint256 lastIndex = numTokens - 1 - i;

                address lastIndexAddress = _poolTokenSets[poolId].unchecked_at(lastIndex);
                _poolTokenSets[poolId].remove(lastIndexAddress);
            }
        } else {
            _poolTokenSetSaved[poolId] = true;
        }

        for (uint256 pt; pt < poolTokens.length; pt++) {
            _poolTokenSets[poolId].add(address(poolTokens[pt]));
        }
    }

    function ensurePoolTokenSetSaved(bytes32 poolId) public {
        if (!_poolTokenSetSaved[poolId]) {
            savePoolTokenSet(poolId);
        }
    }

    modifier withPoolTokenSetSaved(bytes32 poolId) {
        // create a set of the pool tokens if it doesn't exist
        ensurePoolTokenSetSaved(poolId);
        _;
    }

    function _getAssets(bytes32 poolId) internal view returns (IAsset[] memory assets) {
        uint256 numTokens = poolTokensLength(poolId);

        assets = new IAsset[](numTokens);
        for (uint256 pt; pt < numTokens; pt++) {
            assets[pt] = IAsset(_poolTokenSets[poolId].unchecked_at(pt));
        }
    }

    function _poolTokenIndex(bytes32 poolId, address token) internal view returns (uint256) {
        return _poolTokenSets[poolId].rawIndexOf(token);
    }

    function poolHasToken(bytes32 poolId, address token) public view returns (bool) {
        return _poolTokenSets[poolId].contains(token);
    }

    function poolTokensLength(bytes32 poolId) public view returns (uint256) {
        return _poolTokenSets[poolId].length();
    }

    function poolTokenAtIndex(bytes32 poolId, uint256 index) public view returns (address) {
        return _poolTokenSets[poolId].at(index);
    }
}

File 6 of 51 : IDistributorCallback.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IDistributorCallback {
    function distributorCallback(bytes calldata callbackData) external;
}

File 7 of 51 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 8 of 51 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 9 of 51 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 10 of 51 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

/**
 * @dev Interface for WETH9.
 * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 11 of 51 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 12 of 51 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 13 of 51 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 14 of 51 : IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";
import "./IAuthorizer.sol";

interface IProtocolFeesCollector {
    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external;

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external;

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;

    function getSwapFeePercentage() external view returns (uint256);

    function getFlashLoanFeePercentage() external view returns (uint256);

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);

    function getAuthorizer() external view returns (IAuthorizer);

    function vault() external view returns (IVault);
}

File 15 of 51 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 16 of 51 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        if (raw < maxError) {
            return 0;
        } else {
            return sub(raw, maxError);
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        return add(raw, maxError);
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 17 of 51 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

import "./BalancerErrors.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 18 of 51 : BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
 * Swap Info specialization settings.
 */
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override onlyVault(request.poolId) returns (uint256) {
        uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
        uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = request.amount - amountInMinusSwapFees;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            request.amount = amountInMinusSwapFees;

            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn);

            // Process the (upscaled!) swap fee.
            uint256 swapFee = amountInPlusSwapFees - amountIn;
            _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn));

            return amountInPlusSwapFees;
        }
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
     * been deducted from `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /**
     * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all
     * implementations in the inheritance tree are called.
     *
     * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed,
     * and upscale `amount`.
     */
    function _processSwapFeeAmount(
        uint256, /*index*/
        uint256 /*amount*/
    ) internal virtual {
        // solhint-disable-previous-line no-empty-blocks
    }

    function _processSwapFeeAmount(IERC20 token, uint256 amount) internal {
        _processSwapFeeAmount(_tokenAddressToIndex(token), amount);
    }

    function _processSwapFeeAmounts(uint256[] memory amounts) internal {
        InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens());

        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            _processSwapFeeAmount(i, amounts[i]);
        }
    }

    /**
     * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return).
     *
     * A trivial (and incorrect!) implementation is already provided for Pools that don't override
     * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount`
     * *must* override this function with a meaningful implementation.
     */
    function _tokenAddressToIndex(
        IERC20 /*token*/
    ) internal view virtual returns (uint256) {
        return 0;
    }
}

File 19 of 51 : WeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

// These functions start with an underscore, as if they were part of a contract and not a library. At some point this
// should be fixed.
// solhint-disable private-vars-leading-underscore

library WeightedMath {
    using FixedPoint for uint256;
    // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
    // implementation of the power function, as these ratios are often exponents.
    uint256 internal constant _MIN_WEIGHT = 0.01e18;
    // Having a minimum normalized weight imposes a limit on the maximum number of tokens;
    // i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
    uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;

    // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
    // ratio).

    // Swap limits: amounts swapped may not be larger than this percentage of total balance.
    uint256 internal constant _MAX_IN_RATIO = 0.3e18;
    uint256 internal constant _MAX_OUT_RATIO = 0.3e18;

    // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
    uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
    // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
    uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;

    // About swap fees on joins and exits:
    // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically
    // equivalent to a perfectly balanced join or  exit followed by a series of swaps. Since these swaps would charge
    // swap fees, it follows that (some) joins and exits should as well.
    // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part
    // is the one to which swap fees are applied.

    // Invariant is used to collect protocol swap fees by comparing its value between two times.
    // So we can round always to the same direction. It is also used to initiate the BPT amount
    // and, because there is a minimum BPT, we round down the invariant.
    function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
        internal
        pure
        returns (uint256 invariant)
    {
        /**********************************************************************************************
        // invariant               _____                                                             //
        // wi = weight index i      | |      wi                                                      //
        // bi = balance index i     | |  bi ^   = i                                                  //
        // i = invariant                                                                             //
        **********************************************************************************************/

        invariant = FixedPoint.ONE;
        for (uint256 i = 0; i < normalizedWeights.length; i++) {
            invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
        }

        _require(invariant > 0, Errors.ZERO_INVARIANT);
    }

    // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
    // current balances and weights.
    function _calcOutGivenIn(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountIn
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // outGivenIn                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /      /            bI             \    (wI / wO) \           //
        // aI = amountIn    aO = bO * |  1 - | --------------------------  | ^            |          //
        // wI = weightIn               \      \       ( bI + aI )         /              /           //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount out, so we round down overall.

        // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
        // Because bI / (bI + aI) <= 1, the exponent rounds down.

        // Cannot exceed maximum in ratio
        _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);

        uint256 denominator = balanceIn.add(amountIn);
        uint256 base = balanceIn.divUp(denominator);
        uint256 exponent = weightIn.divDown(weightOut);
        uint256 power = base.powUp(exponent);

        return balanceOut.mulDown(power.complement());
    }

    // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
    // current balances and weights.
    function _calcInGivenOut(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountOut
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // inGivenOut                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /  /            bO             \    (wO / wI)      \          //
        // aI = amountIn    aI = bI * |  | --------------------------  | ^            - 1  |         //
        // wI = weightIn               \  \       ( bO - aO )         /                   /          //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount in, so we round up overall.

        // The multiplication rounds up, and the power rounds up (so the base rounds up too).
        // Because b0 / (b0 - a0) >= 1, the exponent rounds up.

        // Cannot exceed maximum out ratio
        _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);

        uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
        uint256 exponent = weightOut.divUp(weightIn);
        uint256 power = base.powUp(exponent);

        // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
        // the following subtraction should never revert.
        uint256 ratio = power.sub(FixedPoint.ONE);

        return balanceIn.mulUp(ratio);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT out, so we round down overall.

        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);

        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeJoinExactTokensInInvariantRatio(
            balances,
            normalizedWeights,
            amountsIn,
            balanceRatiosWithFee,
            invariantRatioWithFees,
            swapFeePercentage
        );

        uint256 bptOut = (invariantRatio > FixedPoint.ONE)
            ? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE))
            : 0;
        return (bptOut, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeJoinExactTokensInInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256[] memory balanceRatiosWithFee,
        uint256 invariantRatioWithFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        // Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant
        // increase.
        swapFees = new uint256[](amountsIn.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                uint256 swapFee = taxableAmount.mulUp(swapFeePercentage);

                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee));
                swapFees[i] = swapFee;
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountIn, uint256 swapFee) {
        /******************************************************************************************
        // tokenInForExactBPTOut                                                                 //
        // a = amountIn                                                                          //
        // b = balance                      /  /    totalBPT + bptOut      \    (1 / w)       \  //
        // bptOut = bptAmountOut   a = b * |  | --------------------------  | ^          - 1  |  //
        // bpt = totalBPT                   \  \       totalBPT            /                  /  //
        // w = weight                                                                            //
        ******************************************************************************************/

        // Token in, so we round up overall.

        // Calculate the factor by which the invariant will increase after minting BPTAmountOut
        uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
        _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);

        // Calculate by how much the token balance has to increase to match the invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));

        uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 taxablePercentage = normalizedWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

        swapFee = taxableAmountPlusFees - taxableAmount;
        amountIn = nonTaxableAmount.add(taxableAmountPlusFees);
    }

    function _calcAllTokensInGivenExactBptOut(
        uint256[] memory balances,
        uint256 bptAmountOut,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /************************************************************************************
        // tokensInForExactBptOut                                                          //
        // (per token)                                                                     //
        // aI = amountIn                   /   bptOut   \                                  //
        // b = balance           aI = b * | ------------ |                                 //
        // bptOut = bptAmountOut           \  totalBPT  /                                  //
        // bpt = totalBPT                                                                  //
        ************************************************************************************/

        // Tokens in, so we round up overall.
        uint256 bptRatio = bptAmountOut.divUp(totalBPT);

        uint256[] memory amountsIn = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsIn[i] = balances[i].mulUp(bptRatio);
        }

        return amountsIn;
    }

    function _calcBptInGivenExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256, uint256[] memory) {
        // BPT in, so we round up overall.

        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(
                balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
            );
        }

        (uint256 invariantRatio, uint256[] memory swapFees) = _computeExitExactTokensOutInvariantRatio(
            balances,
            normalizedWeights,
            amountsOut,
            balanceRatiosWithoutFee,
            invariantRatioWithoutFees,
            swapFeePercentage
        );

        uint256 bptIn = bptTotalSupply.mulUp(invariantRatio.complement());
        return (bptIn, swapFees);
    }

    /**
     * @dev Intermediate function to avoid stack-too-deep errors.
     */
    function _computeExitExactTokensOutInvariantRatio(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256[] memory balanceRatiosWithoutFee,
        uint256 invariantRatioWithoutFees,
        uint256 swapFeePercentage
    ) private pure returns (uint256 invariantRatio, uint256[] memory swapFees) {
        swapFees = new uint256[](amountsOut.length);
        invariantRatio = FixedPoint.ONE;

        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
                uint256 taxableAmountPlusFees = taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage));

                swapFees[i] = taxableAmountPlusFees - taxableAmount;
                amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees);
            } else {
                amountOutWithFee = amountsOut[i];
            }

            uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256 amountOut, uint256 swapFee) {
        /*****************************************************************************************
        // exactBPTInForTokenOut                                                                //
        // a = amountOut                                                                        //
        // b = balance                     /      /    totalBPT - bptIn       \    (1 / w)  \   //
        // bptIn = bptAmountIn    a = b * |  1 - | --------------------------  | ^           |  //
        // bpt = totalBPT                  \      \       totalBPT            /             /   //
        // w = weight                                                                           //
        *****************************************************************************************/

        // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
        // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.

        // Calculate the factor by which the invariant will decrease after burning BPTAmountIn
        uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
        _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);

        // Calculate by how much the token balance has to decrease to match invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));

        // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
        uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 taxablePercentage = normalizedWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        swapFee = taxableAmount.mulUp(swapFeePercentage);
        amountOut = nonTaxableAmount.add(taxableAmount.sub(swapFee));
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = amountOut                  /        bptIn         \                                  //
        // b = balance           a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \       totalBPT       /                                  //
        // bpt = totalBPT                                                                            //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(totalBPT);

        uint256[] memory amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }

        return amountsOut;
    }

    function _calcDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        /*********************************************************************************
        /*  protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken))
        *********************************************************************************/

        if (currentInvariant <= previousInvariant) {
            // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
            // from entering a locked state in which joins and exits revert while computing accumulated swap fees.
            return 0;
        }

        // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol
        // fees to the Vault.

        // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the
        // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down.

        uint256 base = previousInvariant.divUp(currentInvariant);
        uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight);

        // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this
        // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than
        // 1 / min exponent) the Pool will pay less in protocol fees than it should.
        base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT);

        uint256 power = base.powUp(exponent);

        uint256 tokenAccruedFees = balance.mulDown(power.complement());
        return tokenAccruedFees.mulDown(protocolSwapFeePercentage);
    }
}

File 20 of 51 : WeightedPoolUserDataHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./BaseWeightedPool.sol";

library WeightedPoolUserDataHelpers {
    function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) {
        return abi.decode(self, (BaseWeightedPool.JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) {
        return abi.decode(self, (BaseWeightedPool.ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256));
    }

    function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
        (, bptAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256));
    }
}

File 21 of 51 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 22 of 51 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode) pure {
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
        // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).

        let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;
    uint256 internal constant NOT_TWO_TOKENS = 210;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;
    uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
    uint256 internal constant AMP_ONGOING_UPDATE = 318;
    uint256 internal constant AMP_RATE_TOO_HIGH = 319;
    uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
    uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
    uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
    uint256 internal constant RELAYER_NOT_CONTRACT = 323;
    uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
    uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
    uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
    uint256 internal constant SWAPS_DISABLED = 327;
    uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
    uint256 internal constant PRICE_RATE_OVERFLOW = 329;
    uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
    uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
    uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
    uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
    uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
    uint256 internal constant OUT_OF_TARGET_RANGE = 335;
    uint256 internal constant UNHANDLED_EXIT_KIND = 336;
    uint256 internal constant UNAUTHORIZED_EXIT = 337;
    uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
    uint256 internal constant UNHANDLED_BY_INVESTMENT_POOL = 339;
    uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
    uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
    uint256 internal constant INVALID_INITIALIZATION = 342;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
    uint256 internal constant CALLER_IS_NOT_OWNER = 426;
    uint256 internal constant NEW_OWNER_IS_ZERO = 427;
    uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
    uint256 internal constant CALL_TO_NON_CONTRACT = 429;
    uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}

File 23 of 51 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";

import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";

// solhint-disable max-states-count

/**
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
 * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
    using WordCodec for bytes32;
    using FixedPoint for uint256;

    uint256 private constant _MIN_TOKENS = 2;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits

    // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used
    // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information.
    // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be
    // used to store any other piece of information.
    bytes32 private _miscData;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;

    bytes32 private immutable _poolId;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol, vault)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        vault.registerTokens(poolId, tokens, assetManagers);

        // Set immutable state variables - these cannot be read from during construction
        _poolId = poolId;
    }

    // Getters / Setters

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view virtual returns (uint256);

    function _getMaxTokens() internal pure virtual returns (uint256);

    function _getMinimumBpt() internal pure virtual returns (uint256) {
        return _MINIMUM_BPT;
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
        public
        virtual
        authenticate
        whenNotPaused
    {
        _setAssetManagerPoolConfig(token, poolConfig);
    }

    function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
        bytes32 poolId = getPoolId();
        (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);

        IAssetManager(assetManager).setConfig(poolId, poolConfig);
    }

    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(this.setAssetManagerPoolConfig.selector));
    }

    function _getMiscData() internal view returns (bytes32) {
        return _miscData;
    }

    /**
     * Inserts data into the least-significant 192 bits of the misc data storage slot.
     * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
     */
    function _setMiscData(bytes32 newData) internal {
        _miscData = _miscData.insertBits192(newData, 0);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
                poolId,
                sender,
                recipient,
                scalingFactors,
                userData
            );

            // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
            // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
            // Pool from ever being fully drained.
            _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _getMinimumBpt());
            _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](_getTotalTokens()));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

            return (amountsIn, dueProtocolFeeAmounts);
        }
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            scalingFactors,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut, scalingFactors);
        _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

        return (amountsOut, dueProtocolFeeAmounts);
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
     * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
     * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
     * Pool's lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        );

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        );

    // Internal functions

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage()));
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
        if (address(token) == address(this)) {
            return FixedPoint.ONE;
        }

        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     *
     * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
     * derived contracts that need to apply further scaling, making these factors potentially non-integer.
     *
     * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
     * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
     * even relatively 'large' factors safe to use.
     *
     * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
     */
    function _scalingFactor(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
     * will always pass balances in this order when calling any of the Pool hooks.
     */
    function _scalingFactors() internal view virtual returns (uint256[] memory);

    function getScalingFactors() external view returns (uint256[] memory) {
        return _scalingFactors();
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
        // token in should be rounded up, and that of token out rounded down. This is the only place where we round in
        // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
        // rounding error unless `_scalingFactor()` is overriden).
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 24 of 51 : IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
 * to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IMinimalSwapInfoPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) external returns (uint256 amount);
}

File 25 of 51 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library
 */
library Math {
    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 26 of 51 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 27 of 51 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 *
 * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and
 * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or
 * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location),
 * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even
 * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive,
 * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and
 * unpacking is therefore the preferred approach.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_5 = 2**(5) - 1;
    uint256 private constant _MASK_7 = 2**(7) - 1;
    uint256 private constant _MASK_10 = 2**(10) - 1;
    uint256 private constant _MASK_16 = 2**(16) - 1;
    uint256 private constant _MASK_22 = 2**(22) - 1;
    uint256 private constant _MASK_31 = 2**(31) - 1;
    uint256 private constant _MASK_32 = 2**(32) - 1;
    uint256 private constant _MASK_53 = 2**(53) - 1;
    uint256 private constant _MASK_64 = 2**(64) - 1;
    uint256 private constant _MASK_128 = 2**(128) - 1;
    uint256 private constant _MASK_192 = 2**(192) - 1;

    // Largest positive values that can be represented as N bits signed integers.
    int256 private constant _MAX_INT_22 = 2**(21) - 1;
    int256 private constant _MAX_INT_53 = 2**(52) - 1;

    // In-place insertion

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBool(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Unsigned

    /**
     * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint5(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint7(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint10(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     *
     * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint16(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 31 bits.
     */
    function insertUint31(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint32(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint64(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
        return clearedWord | bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 22 bits.
     */
    function insertInt22(
        bytes32 word,
        int256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
    }

    // Bytes

    /**
     * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word.
     *
     * Assumes `value` can be represented using 192 bits.
     */
    function insertBits192(
        bytes32 word,
        bytes32 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
        return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
    }

    // Encoding

    // Unsigned

    /**
     * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to
     * ensure that the values are bounded.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) {
        return bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Encodes a 22 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_22) << offset);
    }

    /**
     * @dev Encodes a 53 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_53) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    // Unsigned

    /**
     * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_5;
    }

    /**
     * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_7;
    }

    /**
     * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_10;
    }

    /**
     * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_16;
    }

    /**
     * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_31;
    }

    /**
     * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_32;
    }

    /**
     * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_64;
    }

    /**
     * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_128;
    }

    // Signed

    /**
     * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_22);
        // In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
    }

    /**
     * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_53);
        // In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.

        return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
    }
}

File 28 of 51 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";
import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 29 of 51 : IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IAssetManager {
    /**
     * @notice Emitted when asset manager is rebalanced
     */
    event Rebalance(bytes32 poolId);

    /**
     * @notice Sets the config
     */
    function setConfig(bytes32 poolId, bytes calldata config) external;

    /**
     * Note: No function to read the asset manager config is included in IAssetManager
     * as the signature is expected to vary between asset manager implementations
     */

    /**
     * @notice Returns the asset manager's token
     */
    function getToken() external view returns (IERC20);

    /**
     * @return the current assets under management of this asset manager
     */
    function getAUM(bytes32 poolId) external view returns (uint256);

    /**
     * @return poolCash - The up-to-date cash balance of the pool
     * @return poolManaged - The up-to-date managed balance of the pool
     */
    function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);

    /**
     * @return The difference in tokens between the target investment
     * and the currently invested amount (i.e. the amount that can be invested)
     */
    function maxInvestableBalance(bytes32 poolId) external view returns (int256);

    /**
     * @notice Updates the Vault on the value of the pool's investment returns
     */
    function updateBalanceOfPool(bytes32 poolId) external;

    /**
     * @notice Determines whether the pool should rebalance given the provided balances
     */
    function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);

    /**
     * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
     * @param poolId - the poolId of the pool to be rebalanced
     * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
     */
    function rebalance(bytes32 poolId, bool force) external;

    /**
     * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
     * @param poolId - the poolId of the pool to withdraw funds back to
     * @param amount - the amount of tokens to withdraw back to the pool
     */
    function capitalOut(bytes32 poolId, uint256 amount) external;
}

File 30 of 51 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 * - Assigns infinite allowance for all token holders to the Vault
 */
contract BalancerPoolToken is ERC20, ERC20Permit {
    IVault private immutable _vault;

    constructor(
        string memory tokenName,
        string memory tokenSymbol,
        IVault vault
    ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) {
        _vault = vault;
    }

    function getVault() public view returns (IVault) {
        return _vault;
    }

    // Overrides

    /**
     * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval.
     *
     * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this
     * contract inherits.
     */
    function allowance(address owner, address spender) public view override returns (uint256) {
        if (spender == address(getVault())) {
            return uint256(-1);
        } else {
            return super.allowance(owner, spender);
        }
    }

    /**
     * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentAllowance = allowance(sender, msg.sender);
        _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);

        _transfer(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _approve(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
     */
    function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
        uint256 currentAllowance = allowance(msg.sender, spender);

        if (amount >= currentAllowance) {
            _approve(msg.sender, spender, 0);
        } else {
            // No risk of underflow due to if condition
            _approve(msg.sender, spender, currentAllowance - amount);
        }

        return true;
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _mint(recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        _burn(sender, amount);
    }
}

File 31 of 51 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";

import "./BasePool.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 32 of 51 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 33 of 51 : ERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "./ERC20.sol";
import "./IERC20Permit.sol";
import "./EIP712.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    mapping(address => uint256) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private immutable _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        // solhint-disable-next-line not-rely-on-time
        _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);

        uint256 nonce = _nonces[owner];
        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ecrecover(hash, v, r, s);
        _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);

        _nonces[owner] = nonce + 1;
        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view override returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 34 of 51 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 35 of 51 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 36 of 51 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 37 of 51 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 38 of 51 : EnumerableSet.sol
// SPDX-License-Identifier: MIT

// Based on the EnumerableSet library from OpenZeppelin Contracts, altered to remove the base private functions that
// work on bytes32, replacing them with a native implementation for address values, to reduce bytecode size and runtime
// costs.
// The `unchecked_at` function was also added, which allows for more gas efficient data reads in some scenarios.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 */
library EnumerableSet {
    // The original OpenZeppelin implementation uses a generic Set type with bytes32 values: this was replaced with
    // AddressSet, which uses address keys natively, resulting in more dense bytecode.

    struct AddressSet {
        // Storage of set values
        address[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(address => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        if (!contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            // The swap is only necessary if we're not removing the last element
            if (toDeleteIndex != lastIndex) {
                address lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = toDeleteIndex + 1; // All indexes are 1-based
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        _require(set._values.length > index, Errors.OUT_OF_BOUNDS);
        return unchecked_at(set, index);
    }

    /**
     * @dev Same as {at}, except this doesn't revert if `index` it outside of the set (i.e. if it is equal or larger
     * than {length}). O(1).
     *
     * This function performs one less storage read than {at}, but should only be used when `index` is known to be
     * within bounds.
     */
    function unchecked_at(AddressSet storage set, uint256 index) internal view returns (address) {
        return set._values[index];
    }

    function rawIndexOf(AddressSet storage set, address value) internal view returns (uint256) {
        return set._indexes[value] - 1;
    }
}

File 39 of 51 : MockRewardCallback.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../interfaces/IDistributorCallback.sol";

contract MockRewardCallback is IDistributorCallback {
    event CallbackReceived();

    function distributorCallback(bytes calldata) external override {
        emit CallbackReceived();
        return;
    }
}

File 40 of 51 : Reinvestor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-pool-weighted/contracts/BaseWeightedPool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableSet.sol";

import "./PoolTokenCache.sol";
import "./interfaces/IDistributorCallback.sol";

contract Reinvestor is PoolTokenCache, IDistributorCallback {
    using EnumerableSet for EnumerableSet.AddressSet;

    constructor(IVault _vault) PoolTokenCache(_vault) {
        // solhint-disable-previous-line no-empty-blocks
    }

    function _initializeArrays(bytes32 poolId, IERC20[] memory tokens)
        internal
        view
        returns (uint256[] memory amountsIn, IVault.UserBalanceOp[] memory leftoverOps)
    {
        uint256 joinTokensCount;
        uint256 leftoverTokensCount;
        for (uint256 t; t < tokens.length; t++) {
            if (poolHasToken(poolId, address(tokens[t]))) {
                joinTokensCount++;
            }
        }
        leftoverTokensCount = tokens.length - joinTokensCount;

        amountsIn = new uint256[](poolTokensLength(poolId));

        leftoverOps = new IVault.UserBalanceOp[](leftoverTokensCount);
    }

    function _populateArrays(
        bytes32 poolId,
        address recipient,
        IERC20[] memory tokens,
        uint256[] memory internalBalances,
        uint256[] memory amountsIn,
        IVault.UserBalanceOp[] memory leftoverOps
    ) internal view {
        uint256 leftoverOpsIdx;

        for (uint256 t; t < tokens.length; t++) {
            address token = address(tokens[t]);

            if (poolHasToken(poolId, token)) {
                amountsIn[_poolTokenIndex(poolId, token)] = internalBalances[t];
            } else {
                leftoverOps[leftoverOpsIdx] = IVault.UserBalanceOp({
                    asset: IAsset(token),
                    amount: internalBalances[t], // callbackAmounts have been subtracted
                    sender: address(this),
                    recipient: payable(recipient),
                    kind: IVault.UserBalanceOpKind.WITHDRAW_INTERNAL
                });
                leftoverOpsIdx++;
            }
        }
    }

    struct CallbackParams {
        address payable recipient;
        bytes32 poolId;
        IERC20[] tokens;
    }

    /**
     * @notice Reinvests tokens in a specified pool
     * @param callbackData - the encoded function arguments
     * recipient - the recipient of the bpt and leftover funds
     * poolId - The pool to receive the tokens
     * tokens - The tokens that were received
     */
    function distributorCallback(bytes calldata callbackData) external override {
        CallbackParams memory params = abi.decode(callbackData, (CallbackParams));

        ensurePoolTokenSetSaved(params.poolId);

        IAsset[] memory assets = _getAssets(params.poolId);

        (uint256[] memory amountsIn, IVault.UserBalanceOp[] memory leftoverOps) = _initializeArrays(
            params.poolId,
            params.tokens
        );

        uint256[] memory internalBalances = vault.getInternalBalance(address(this), params.tokens);
        _populateArrays(params.poolId, params.recipient, params.tokens, internalBalances, amountsIn, leftoverOps);

        _joinPool(params.poolId, params.recipient, assets, amountsIn);
        vault.manageUserBalance(leftoverOps);
    }

    function _joinPool(
        bytes32 poolId,
        address recipient,
        IAsset[] memory assets,
        uint256[] memory amountsIn
    ) internal {
        bytes memory userData = abi.encode(
            BaseWeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT,
            amountsIn,
            uint256(0)
        );

        IVault.JoinPoolRequest memory request = IVault.JoinPoolRequest(assets, amountsIn, userData, true);

        vault.joinPool(poolId, address(this), recipient, request);
    }
}

File 41 of 51 : MultiRewards.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/EnumerableSet.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20Permit.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";

import "./RewardsScheduler.sol";

import "./interfaces/IMultiRewards.sol";
import "./interfaces/IDistributorCallback.sol";
import "./interfaces/IDistributor.sol";

import "./MultiRewardsAuthorization.sol";

// solhint-disable not-rely-on-time

/**
 * Balancer MultiRewards claim contract (claim to internal balance) based on
 * Curve Finance's MultiRewards contract, updated to be compatible with solc 0.7.0
 * https://github.com/curvefi/multi-rewards/blob/master/contracts/MultiRewards.sol commit #9947623
 */

contract MultiRewards is IMultiRewards, IDistributor, ReentrancyGuard, MultiRewardsAuthorization {
    using FixedPoint for uint256;
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;

    /* ========== STATE VARIABLES ========== */

    struct Reward {
        uint256 rewardsDuration;
        uint256 periodFinish;
        uint256 rewardRate;
        uint256 lastUpdateTime;
        uint256 rewardPerTokenStored;
    }

    // pool -> rewarder -> rewardToken -> RewardData
    mapping(IERC20 => mapping(address => mapping(IERC20 => Reward))) public rewardData;

    // pool -> rewardTokens
    mapping(IERC20 => EnumerableSet.AddressSet) private _rewardTokens;

    // pool -> rewardToken -> rewarders
    mapping(IERC20 => mapping(IERC20 => EnumerableSet.AddressSet)) private _rewarders;

    // pool -> rewarder ->  user -> reward token -> amount
    mapping(IERC20 => mapping(address => mapping(address => mapping(IERC20 => uint256)))) public userRewardPerTokenPaid;

    // pool -> user -> reward token -> amount
    mapping(IERC20 => mapping(address => mapping(IERC20 => uint256))) public unpaidRewards;

    mapping(IERC20 => uint256) private _totalSupply;

    // pool -> user -> bpt balance staked
    mapping(IERC20 => mapping(address => uint256)) private _balances;

    RewardsScheduler public immutable rewardsScheduler;

    /* ========== CONSTRUCTOR ========== */

    constructor(IVault _vault)
        // MultiRewards is a singleton, so it simply uses its own address to disambiguate action identifiers
        Authentication(bytes32(uint256(address(this))))
        MultiRewardsAuthorization(_vault)
    {
        // solhint-disable-previous-line no-empty-blocks
        rewardsScheduler = new RewardsScheduler();
    }

    /**
     * @notice Allows a rewarder to be explicitly added to an allowlist of rewarders
     * @param pool The bpt of the pool that the rewarder can reward
     * @param rewardsToken The token to be distributed to stakers
     * @param rewarder The address of the rewarder
     */
    function allowlistRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) external override onlyAllowlisters(pool) {
        _allowlistRewarder(pool, rewardsToken, rewarder);
    }

    /**
     * @notice Whether a rewarder can reward bpt of a pool with a token
     * @param pool The bpt of the pool
     * @param rewardsToken The token to be distributed to stakers
     * @param rewarder The address of the rewarder
     */
    function isAllowlistedRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) public view override returns (bool) {
        return _isAllowlistedRewarder(pool, rewardsToken, rewarder);
    }

    /**
     * @notice Adds a new reward token to be distributed
     * @param pool The bpt of the pool that will receive rewards
     * @param rewardsToken The new token to be distributed to stakers
     * @param rewardsDuration The duration over which each distribution is spread
     */
    function addReward(
        IERC20 pool,
        IERC20 rewardsToken,
        uint256 rewardsDuration
    ) external override onlyAllowlistedRewarder(pool, rewardsToken) {
        require(rewardsDuration > 0, "reward rate must be nonzero");
        require(rewardData[pool][msg.sender][rewardsToken].rewardsDuration == 0, "Duplicate rewards token");
        _rewardTokens[pool].add(address(rewardsToken));
        _rewarders[pool][rewardsToken].add(msg.sender);
        rewardData[pool][msg.sender][rewardsToken].rewardsDuration = rewardsDuration;
        rewardsToken.approve(address(getVault()), type(uint256).max);
    }

    /* ========== VIEWS ========== */

    /**
     * @notice Total supply of a pools bpt that has been staked
     * @param pool The bpt of the pool
     */
    function totalSupply(IERC20 pool) external view returns (uint256) {
        return _totalSupply[pool];
    }

    /**
     * @notice The balance of a pools bpt that `account` has staked
     * @param pool The bpt of the pool
     * @param account The address of the user with staked bpt
     */
    function balanceOf(IERC20 pool, address account) external view returns (uint256) {
        return _balances[pool][account];
    }

    /**
     * @notice This time is used when determining up until what time a reward has been accounted for
     * @param pool The bpt of the pool
     * @param rewarder The address of the rewarder
     * @param rewardsToken The token to be distributed to stakers
     */
    function lastTimeRewardApplicable(
        IERC20 pool,
        address rewarder,
        IERC20 rewardsToken
    ) public view returns (uint256) {
        return _lastTimeRewardApplicable(rewardData[pool][rewarder][rewardsToken]);
    }

    function _lastTimeRewardApplicable(Reward storage data) private view returns (uint256) {
        return Math.min(block.timestamp, data.periodFinish);
    }

    /**
     * @notice Calculates the amount of reward token per staked bpt
     * @param pool The bpt of the pool
     * @param rewarder The address of the rewarder
     * @param rewardsToken The token to be distributed to stakers
     */
    function rewardPerToken(
        IERC20 pool,
        address rewarder,
        IERC20 rewardsToken
    ) public view returns (uint256) {
        return _rewardPerToken(pool, rewardData[pool][rewarder][rewardsToken]);
    }

    function _rewardPerToken(IERC20 pool, Reward storage data) private view returns (uint256) {
        if (_totalSupply[pool] == 0) {
            return data.rewardPerTokenStored;
        }
        // Underflow is impossible here because lastTimeRewardApplicable(...) is always greater than
        // last update time
        uint256 unrewardedDuration = _lastTimeRewardApplicable(data) - data.lastUpdateTime;

        return data.rewardPerTokenStored.add(Math.mul(unrewardedDuration, data.rewardRate).divDown(_totalSupply[pool]));
    }

    /**
     * @notice Calculates the amount of `rewardsToken` that `account` is able to claim
     * from a particular rewarder
     * @param pool The bpt of the pool
     * @param rewarder The address of the rewarder
     * @param account The address receiving the rewards
     * @param rewardsToken The token to be distributed to stakers
     */
    function unaccountedForUnpaidRewards(
        IERC20 pool,
        address rewarder,
        address account,
        IERC20 rewardsToken
    ) public view returns (uint256) {
        return
            _balances[pool][account].mulDown(
                rewardPerToken(pool, rewarder, rewardsToken).sub(
                    userRewardPerTokenPaid[pool][rewarder][account][rewardsToken]
                )
            );
    }

    function _unaccountedForUnpaidRewards(
        IERC20 pool,
        address rewarder,
        address account,
        IERC20 rewardsToken,
        Reward storage data
    ) private view returns (uint256) {
        return
            _balances[pool][account].mulDown(
                _rewardPerToken(pool, data).sub(userRewardPerTokenPaid[pool][rewarder][account][rewardsToken])
            );
    }

    /**
     * @notice Calculates the total amount of `rewardsToken` that `account` is able to claim
     * @param pool The bpt of the pool
     * @param account The address receiving the rewards
     * @param rewardsToken The token to be distributed to stakers
     */
    function totalEarned(
        IERC20 pool,
        address account,
        IERC20 rewardsToken
    ) public view returns (uint256 total) {
        uint256 rewardersLength = _rewarders[pool][rewardsToken].length();
        for (uint256 r; r < rewardersLength; r++) {
            total = total.add(
                unaccountedForUnpaidRewards(pool, _rewarders[pool][rewardsToken].unchecked_at(r), account, rewardsToken)
            );
        }
        total = total.add(unpaidRewards[pool][account][rewardsToken]);
    }

    /* ========== MUTATIVE FUNCTIONS ========== */
    /**
     * @notice stakes a token on the msg.sender's behalf
     * @param pool The bpt of the pool that the rewarder can reward
     * @param amount Amount of `pool` to stake
     */
    function stake(IERC20 pool, uint256 amount) external nonReentrant {
        _stakeFor(pool, amount, msg.sender, msg.sender);
    }

    /**
     * @notice Stakes a token so that `receiver` can earn rewards
     * @param pool The token being staked to earn rewards
     * @param amount Amount of `pool` to stake
     * @param receiver The recipient of claimed rewards
     */
    function stakeFor(
        IERC20 pool,
        uint256 amount,
        address receiver
    ) external nonReentrant {
        _stakeFor(pool, amount, msg.sender, receiver);
    }

    function _stakeFor(
        IERC20 pool,
        uint256 amount,
        address account,
        address receiver
    ) internal updateReward(pool, receiver) {
        require(amount > 0, "Cannot stake 0");
        _totalSupply[pool] = _totalSupply[pool].add(amount);
        _balances[pool][receiver] = _balances[pool][receiver].add(amount);
        pool.safeTransferFrom(account, address(this), amount);
        emit Staked(address(pool), receiver, amount);
    }

    /**
     * @notice Stake tokens using a permit signature for approval
     * @param pool      The bpt being staked to earn rewards
     * @param amount    Amount of allowance
     * @param deadline  The time at which this expires (unix time)
     * @param v         v of the signature
     * @param r         r of the signature
     * @param s         s of the signature
     */
    function stakeWithPermit(
        IERC20 pool,
        uint256 amount,
        uint256 deadline,
        address account,
        address recipient,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external nonReentrant {
        // Force the sender to be the recipient to ensure signature is not extracted from the
        // mempool and used for another recipient
        require(account == recipient, "The recipient must match the account in the permit signature");
        IERC20Permit(address(pool)).permit(account, address(this), amount, deadline, v, r, s);
        _stakeFor(pool, amount, account, recipient);
    }

    /**
     * @notice Untakes a token
     * @param pool The token being staked to earn rewards
     * @param amount Amount of `pool` to unstake
     * @param receiver The recipient of the bpt
     */
    function unstake(
        IERC20 pool,
        uint256 amount,
        address receiver
    ) public nonReentrant updateReward(pool, msg.sender) {
        require(amount > 0, "Cannot withdraw 0");
        _totalSupply[pool] = _totalSupply[pool].sub(amount);
        _balances[pool][msg.sender] = _balances[pool][msg.sender].sub(amount);
        pool.safeTransfer(receiver, amount);
        emit Withdrawn(address(pool), receiver, amount);
    }

    /**
     * @notice Allows a user to claim any rewards to an EOA
     * @param pools The pools to claim rewards for
     */
    function getReward(IERC20[] calldata pools) external nonReentrant {
        _getReward(pools, msg.sender, false);
    }

    /**
     * @notice Allows a user to claim any rewards to an internal balance
     * @param pools The pools to claim rewards for
     */
    function getRewardAsInternalBalance(IERC20[] calldata pools) external nonReentrant {
        _getReward(pools, msg.sender, true);
    }

    function _rewardOpsCount(IERC20[] calldata pools) internal view returns (uint256 opsCount) {
        for (uint256 p; p < pools.length; p++) {
            IERC20 pool = pools[p];
            uint256 rewardTokensLength = _rewardTokens[pool].length();
            opsCount += rewardTokensLength;
        }
    }

    /**
     * @notice Allows a user to claim any rewards to an internal balance or EOA
     */
    function _getReward(
        IERC20[] calldata pools,
        address recipient,
        bool asInternalBalance
    ) internal {
        IVault.UserBalanceOpKind kind = asInternalBalance
            ? IVault.UserBalanceOpKind.TRANSFER_INTERNAL
            : IVault.UserBalanceOpKind.WITHDRAW_INTERNAL;

        IVault.UserBalanceOp[] memory ops = new IVault.UserBalanceOp[](_rewardOpsCount(pools));

        uint256 idx;
        for (uint256 p; p < pools.length; p++) {
            IERC20 pool = pools[p];

            uint256 tokensLength = _rewardTokens[pool].length();
            for (uint256 t; t < tokensLength; t++) {
                IERC20 rewardsToken = IERC20(_rewardTokens[pool].unchecked_at(t));

                _updateReward(pool, msg.sender, rewardsToken);
                uint256 reward = unpaidRewards[pool][msg.sender][rewardsToken];

                if (reward > 0) {
                    unpaidRewards[pool][msg.sender][rewardsToken] = 0;

                    emit RewardPaid(msg.sender, address(rewardsToken), reward);
                }

                ops[idx] = IVault.UserBalanceOp({
                    asset: IAsset(address(rewardsToken)),
                    amount: reward,
                    sender: address(this),
                    recipient: payable(recipient),
                    kind: kind
                });
                idx++;
            }
        }
        getVault().manageUserBalance(ops);
    }

    /**
     * @notice Allows the user to claim rewards to a callback contract
     * @param pools An array of pools from which rewards will be claimed
     * @param callbackContract The contract where rewards will be transferred
     * @param callbackData The data that is used to call the callback contract's 'callback' method
     */
    function getRewardWithCallback(
        IERC20[] calldata pools,
        IDistributorCallback callbackContract,
        bytes calldata callbackData
    ) external nonReentrant {
        _getReward(pools, address(callbackContract), true);

        callbackContract.distributorCallback(callbackData);
    }

    /**
     * @notice Allows a user to unstake all their tokens
     * @param pools The pools to unstake tokens for
     */
    function exit(IERC20[] calldata pools) external {
        for (uint256 p; p < pools.length; p++) {
            IERC20 pool = pools[p];
            unstake(pool, _balances[pool][msg.sender], msg.sender);
        }
        _getReward(pools, msg.sender, false);
    }

    /**
     * @notice Allows a user to unstake all their bpt to exit pools, transferring accrued rewards to the user
     * and the unstaked bpt to a callback contract
     * @param pools The pools to claim rewards for
     * @param callbackContract The contract where bpt will be transferred
     * @param callbackData The data that is used to call the callback contract's 'callback' method
     */
    function exitWithCallback(
        IERC20[] calldata pools,
        IDistributorCallback callbackContract,
        bytes calldata callbackData
    ) external {
        for (uint256 p; p < pools.length; p++) {
            IERC20 pool = pools[p];
            unstake(pool, _balances[pool][msg.sender], address(callbackContract));
        }
        _getReward(pools, msg.sender, false);
        callbackContract.distributorCallback(callbackData);
    }

    /* ========== RESTRICTED FUNCTIONS ========== */

    /**
     * @notice Allows a rewards distributor, or the reward scheduler
     * to deposit more tokens to be distributed as rewards
     * @param pool The pool bpt that is staked in this contract
     * @param rewardsToken The token to deposit into staking contract for distribution
     * @param reward The amount of tokens to deposit
     * @param rewarder The address issuing the reward (usually msg.sender)
     */
    function notifyRewardAmount(
        IERC20 pool,
        IERC20 rewardsToken,
        uint256 reward,
        address rewarder
    ) external override updateReward(pool, address(0)) {
        require(
            msg.sender == rewarder || msg.sender == address(rewardsScheduler),
            "Rewarder must be sender, or rewards scheduler"
        );

        require(_rewarders[pool][rewardsToken].contains(rewarder), "Reward must be configured with addReward");

        // handle the transfer of reward tokens via `safeTransferFrom` to reduce the number
        // of transactions required and ensure correctness of the reward amount
        // Tokens always come from msg.sender because either `msg.sender == rewarder`
        // or the`rewardsScheduler` is holding tokens on behalf of the `rewarder`
        rewardsToken.safeTransferFrom(msg.sender, address(this), reward);

        IVault.UserBalanceOp[] memory ops = new IVault.UserBalanceOp[](1);

        ops[0] = IVault.UserBalanceOp({
            asset: IAsset(address(rewardsToken)),
            amount: reward,
            sender: address(this),
            recipient: payable(address(this)),
            kind: IVault.UserBalanceOpKind.DEPOSIT_INTERNAL
        });

        getVault().manageUserBalance(ops);

        // Save the storage pointer to compute the slot only once.
        Reward storage data = rewardData[pool][rewarder][rewardsToken];

        // Cache storage variables to avoid repeated access.
        uint256 periodFinish = data.periodFinish;
        uint256 rewardsDuration = data.rewardsDuration;

        if (block.timestamp >= periodFinish) {
            data.rewardRate = Math.divDown(reward, rewardsDuration);
        } else {
            uint256 remainingTime = periodFinish - block.timestamp; // Checked arithmetic is not required due to the if
            uint256 leftoverRewards = Math.mul(remainingTime, data.rewardRate);
            data.rewardRate = Math.divDown(reward.add(leftoverRewards), rewardsDuration);
        }

        data.lastUpdateTime = block.timestamp;
        data.periodFinish = block.timestamp.add(rewardsDuration);
        emit RewardAdded(address(pool), address(rewardsToken), rewarder, reward);
    }

    /**
     * @notice set the reward duration for a reward
     * @param pool The pool's bpt
     * @param rewardsToken The token for the reward
     * @param rewardsDuration The duration over which each distribution is spread
     */
    function setRewardsDuration(
        IERC20 pool,
        IERC20 rewardsToken,
        uint256 rewardsDuration
    ) external onlyAllowlistedRewarder(pool, rewardsToken) {
        require(_rewarders[pool][rewardsToken].contains(msg.sender), "Reward must be configured with addReward");
        require(
            block.timestamp > rewardData[pool][msg.sender][rewardsToken].periodFinish,
            "Reward period still active"
        );
        require(rewardsDuration > 0, "Reward duration must be non-zero");
        rewardData[pool][msg.sender][rewardsToken].rewardsDuration = rewardsDuration;
        emit RewardsDurationUpdated(
            address(pool),
            address(rewardsToken),
            msg.sender,
            rewardData[pool][msg.sender][rewardsToken].rewardsDuration
        );
    }

    /**
     * @notice update unpaid rewards due to `account` for all rewarders for a particular token
     *         and updates last update time
     */
    function _updateReward(
        IERC20 pool,
        address account,
        IERC20 token
    ) internal {
        uint256 totalUnpaidRewards;

        // Save the storage pointer to compute the slot only once.
        EnumerableSet.AddressSet storage rewarders = _rewarders[pool][token];
        uint256 rewardersLength = rewarders.length();

        for (uint256 r; r < rewardersLength; r++) {
            address rewarder = rewarders.unchecked_at(r);
            Reward storage data = rewardData[pool][rewarder][token];

            // Cache storage variables to avoid repeated access.
            uint256 perToken = _rewardPerToken(pool, data);
            data.rewardPerTokenStored = perToken;

            data.lastUpdateTime = _lastTimeRewardApplicable(data);
            if (account != address(0)) {
                totalUnpaidRewards = totalUnpaidRewards.add(
                    _unaccountedForUnpaidRewards(pool, rewarder, account, token, data)
                );
                userRewardPerTokenPaid[pool][rewarder][account][token] = perToken;
            }
        }

        unpaidRewards[pool][account][token] = totalUnpaidRewards;
    }

    /* ========== MODIFIERS ========== */
    /**
     * @notice
     * Updates the rewards due to `account` from all _rewardTokens and _rewarders
     */
    modifier updateReward(IERC20 pool, address account) {
        uint256 rewardTokensLength = _rewardTokens[pool].length();
        for (uint256 t; t < rewardTokensLength; t++) {
            IERC20 rewardToken = IERC20(_rewardTokens[pool].unchecked_at(t));
            _updateReward(pool, account, rewardToken);
        }
        _;
    }

    /* ========== EVENTS ========== */

    event Staked(address indexed pool, address indexed account, uint256 amount);
    event Withdrawn(address indexed pool, address indexed account, uint256 amount);
    event RewardAdded(address indexed pool, address indexed token, address indexed rewarder, uint256 amount);
    event RewardsDurationUpdated(
        address indexed pool,
        address indexed token,
        address indexed rewarder,
        uint256 newDuration
    );
}

File 42 of 51 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _enterNonReentrant();
        _;
        _exitNonReentrant();
    }

    function _enterNonReentrant() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        _require(_status != _ENTERED, Errors.REENTRANCY);

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _exitNonReentrant() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 43 of 51 : SafeERC20.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce gas costs.
// The `safeTransfer` and `safeTransferFrom` functions assume that `token` is a contract (an account with code), and
// work differently from the OpenZeppelin version if it is not.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(address(token), abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(address(token), abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     *
     * WARNING: `token` is assumed to be a contract: calls to EOAs will *not* revert.
     */
    function _callOptionalReturn(address token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves.
        (bool success, bytes memory returndata) = token.call(data);

        // If the low-level call didn't succeed we return whatever was returned from it.
        assembly {
            if eq(success, 0) {
                returndatacopy(0, 0, returndatasize())
                revert(0, returndatasize())
            }
        }

        // Finally we check the returndata size is either zero or true - note that this check will always pass for EOAs
        _require(returndata.length == 0 || abi.decode(returndata, (bool)), Errors.SAFE_ERC20_CALL_FAILED);
    }
}

File 44 of 51 : RewardsScheduler.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeERC20.sol";
import "./interfaces/IMultiRewards.sol";

// solhint-disable not-rely-on-time

/**
 * Scheduler for MultiRewards contract
 */
contract RewardsScheduler {
    using SafeERC20 for IERC20;

    IMultiRewards private immutable _multirewards;

    constructor() {
        _multirewards = IMultiRewards(msg.sender);
    }

    enum RewardStatus { UNINITIALIZED, PENDING, STARTED }

    struct ScheduledReward {
        IERC20 pool;
        IERC20 rewardsToken;
        uint256 startTime;
        address rewarder;
        uint256 amount;
        RewardStatus status;
    }

    event RewardScheduled(
        bytes32 rewardId,
        address indexed rewarder,
        IERC20 indexed pool,
        IERC20 indexed rewardsToken,
        uint256 startTime,
        uint256 amount
    );
    event RewardStarted(
        bytes32 rewardId,
        address indexed rewarder,
        IERC20 indexed pool,
        IERC20 indexed rewardsToken,
        uint256 startTime,
        uint256 amount
    );

    mapping(bytes32 => ScheduledReward) private _rewards;

    function getScheduledRewardInfo(bytes32 rewardId) external view returns (ScheduledReward memory reward) {
        return _rewards[rewardId];
    }

    function startRewards(bytes32[] calldata rewardIds) external {
        for (uint256 r; r < rewardIds.length; r++) {
            bytes32 rewardId = rewardIds[r];
            ScheduledReward memory scheduledReward = _rewards[rewardId];

            require(scheduledReward.status == RewardStatus.PENDING, "Reward cannot be started");
            require(scheduledReward.startTime <= block.timestamp, "Reward start time is in the future");

            _rewards[rewardId].status = RewardStatus.STARTED;

            if (
                scheduledReward.rewardsToken.allowance(address(this), address(_multirewards)) < scheduledReward.amount
            ) {
                scheduledReward.rewardsToken.approve(address(_multirewards), type(uint256).max);
            }
            _multirewards.notifyRewardAmount(
                scheduledReward.pool,
                scheduledReward.rewardsToken,
                scheduledReward.amount,
                scheduledReward.rewarder
            );
            emit RewardStarted(
                rewardId,
                scheduledReward.rewarder,
                scheduledReward.pool,
                scheduledReward.rewardsToken,
                scheduledReward.startTime,
                scheduledReward.amount
            );
        }
    }

    function getRewardId(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder,
        uint256 startTime
    ) public pure returns (bytes32) {
        return keccak256(abi.encodePacked(pool, rewardsToken, rewarder, startTime));
    }

    function scheduleReward(
        IERC20 pool,
        IERC20 rewardsToken,
        uint256 amount,
        uint256 startTime
    ) public returns (bytes32 rewardId) {
        rewardId = getRewardId(pool, rewardsToken, msg.sender, startTime);
        require(startTime > block.timestamp, "Reward can only be scheduled for the future");
        require(
            _multirewards.isAllowlistedRewarder(pool, rewardsToken, msg.sender),
            "Only allowlisted rewarders can schedule reward"
        );

        require(_rewards[rewardId].status == RewardStatus.UNINITIALIZED, "Reward has already been scheduled");

        _rewards[rewardId] = ScheduledReward({
            pool: pool,
            rewardsToken: rewardsToken,
            rewarder: msg.sender,
            amount: amount,
            startTime: startTime,
            status: RewardStatus.PENDING
        });

        rewardsToken.safeTransferFrom(msg.sender, address(this), amount);

        emit RewardScheduled(rewardId, msg.sender, pool, rewardsToken, startTime, amount);
    }
}

File 45 of 51 : IMultiRewards.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IMultiRewards {
    function notifyRewardAmount(
        IERC20 stakingToken,
        IERC20 rewardsToken,
        uint256 reward,
        address rewarder
    ) external;

    function addReward(
        IERC20 pool,
        IERC20 rewardsToken,
        uint256 rewardsDuration
    ) external;

    function allowlistRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) external;

    function isAllowlistedRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) external view returns (bool);
}

File 46 of 51 : IDistributor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IDistributor {
    event RewardPaid(address indexed user, address indexed rewardToken, uint256 amount);
}

File 47 of 51 : MultiRewardsAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20Permit.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";

/**
 * @dev Base authorization layer implementation for MultiRewards
 */
abstract contract MultiRewardsAuthorization is Authentication {
    IVault private immutable _vault;

    mapping(IERC20 => mapping(IERC20 => mapping(address => bool))) private _allowlist;

    event RewarderAllowlisted(address indexed pool, address indexed token, address indexed rewarder);

    constructor(IVault vault) {
        _vault = vault;
    }

    modifier onlyAllowlistedRewarder(IERC20 pool, IERC20 rewardsToken) {
        require(_isAllowlistedRewarder(pool, rewardsToken, msg.sender), "Only accessible by allowlisted rewarders");
        _;
    }

    modifier onlyAllowlisters(IERC20 pool) {
        require(
            _canPerform(getActionId(msg.sig), msg.sender) ||
                msg.sender == address(pool) ||
                isAssetManager(pool, msg.sender),
            "Only accessible by governance, pool or it's asset managers"
        );
        _;
    }

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _getAuthorizer() internal view returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        return getVault().getAuthorizer();
    }

    /**
     * @notice Allows a rewarder to be explicitly added to an allowlist of rewarders
     */
    function _allowlistRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) internal {
        _allowlist[pool][rewardsToken][rewarder] = true;
        emit RewarderAllowlisted(address(pool), address(rewardsToken), rewarder);
    }

    function _isAllowlistedRewarder(
        IERC20 pool,
        IERC20 rewardsToken,
        address rewarder
    ) internal view returns (bool) {
        return _allowlist[pool][rewardsToken][rewarder];
    }

    /**
     * @notice Checks if a rewarder is an asset manager
     */
    function isAssetManager(IERC20 pool, address rewarder) public view returns (bool) {
        IBasePool poolContract = IBasePool(address(pool));
        bytes32 poolId = poolContract.getPoolId();
        (IERC20[] memory poolTokens, , ) = getVault().getPoolTokens(poolId);

        for (uint256 pt; pt < poolTokens.length; pt++) {
            (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, poolTokens[pt]);
            if (assetManager == rewarder) {
                return true;
            }
        }
        return false;
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        return _getAuthorizer().canPerform(actionId, account, address(this));
    }
}

File 48 of 51 : MerkleRedeem.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/Ownable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/MerkleProof.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";

import "./interfaces/IDistributor.sol";
import "./interfaces/IDistributorCallback.sol";

pragma solidity ^0.7.0;

contract MerkleRedeem is IDistributor, Ownable {
    using FixedPoint for uint256;
    using SafeERC20 for IERC20;

    IERC20 public immutable rewardToken;

    // Recorded weeks
    mapping(uint256 => bytes32) public weekMerkleRoots;
    mapping(uint256 => mapping(address => bool)) public claimed;

    IVault public immutable vault;

    event RewardAdded(address indexed token, uint256 amount);

    constructor(IVault _vault, IERC20 _rewardToken) {
        vault = _vault;
        rewardToken = _rewardToken;
        _rewardToken.approve(address(_vault), type(uint256).max);
    }

    function _disburse(address recipient, uint256 balance) private {
        if (balance > 0) {
            emit RewardPaid(recipient, address(rewardToken), balance);
            rewardToken.safeTransfer(recipient, balance);
        }
    }

    function _disburseToInternalBalance(address recipient, uint256 balance) private {
        if (balance > 0) {
            IVault.UserBalanceOp[] memory ops = new IVault.UserBalanceOp[](1);

            ops[0] = IVault.UserBalanceOp({
                asset: IAsset(address(rewardToken)),
                amount: balance,
                sender: address(this),
                recipient: payable(recipient),
                kind: IVault.UserBalanceOpKind.DEPOSIT_INTERNAL
            });

            emit RewardPaid(recipient, address(rewardToken), balance);
            vault.manageUserBalance(ops);
        }
    }

    /**
     * @notice Allows a user to claim a particular week's worth of rewards
     */
    function claimWeek(
        address liquidityProvider,
        uint256 week,
        uint256 claimedBalance,
        bytes32[] memory merkleProof
    ) external {
        require(msg.sender == liquidityProvider, "user must claim own balance");
        require(!claimed[week][liquidityProvider], "cannot claim twice");
        require(verifyClaim(liquidityProvider, week, claimedBalance, merkleProof), "Incorrect merkle proof");

        claimed[week][liquidityProvider] = true;
        _disburse(liquidityProvider, claimedBalance);
    }

    struct Claim {
        uint256 week;
        uint256 balance;
        bytes32[] merkleProof;
    }

    function _processClaims(address liquidityProvider, Claim[] memory claims) internal returns (uint256 totalBalance) {
        Claim memory claim;
        for (uint256 i = 0; i < claims.length; i++) {
            claim = claims[i];

            require(!claimed[claim.week][liquidityProvider], "cannot claim twice");
            require(
                verifyClaim(liquidityProvider, claim.week, claim.balance, claim.merkleProof),
                "Incorrect merkle proof"
            );

            totalBalance = totalBalance.add(claim.balance);
            claimed[claim.week][liquidityProvider] = true;
        }
    }

    /**
     * @notice Allows a user to claim multiple weeks of reward
     */
    function claimWeeks(address liquidityProvider, Claim[] memory claims) external {
        require(msg.sender == liquidityProvider, "user must claim own balance");

        uint256 totalBalance = _processClaims(liquidityProvider, claims);
        _disburse(liquidityProvider, totalBalance);
    }

    /**
     * @notice Allows a user to claim multiple weeks of reward to internal balance
     */
    function claimWeeksToInternalBalance(address liquidityProvider, Claim[] memory claims) external {
        require(msg.sender == liquidityProvider, "user must claim own balance");

        uint256 totalBalance = _processClaims(liquidityProvider, claims);

        _disburseToInternalBalance(liquidityProvider, totalBalance);
    }

    /**
     * @notice Allows a user to claim several weeks of rewards to a callback
     */
    function claimWeeksWithCallback(
        address liquidityProvider,
        IDistributorCallback callbackContract,
        bytes calldata callbackData,
        Claim[] memory claims
    ) external {
        require(msg.sender == liquidityProvider, "user must claim own balance");
        uint256 totalBalance = _processClaims(liquidityProvider, claims);

        _disburseToInternalBalance(address(callbackContract), totalBalance);

        callbackContract.distributorCallback(callbackData);
    }

    function claimStatus(
        address liquidityProvider,
        uint256 begin,
        uint256 end
    ) external view returns (bool[] memory) {
        require(begin <= end, "weeks must be specified in ascending order");
        uint256 size = 1 + end - begin;
        bool[] memory arr = new bool[](size);
        for (uint256 i = 0; i < size; i++) {
            arr[i] = claimed[begin + i][liquidityProvider];
        }
        return arr;
    }

    function merkleRoots(uint256 begin, uint256 end) external view returns (bytes32[] memory) {
        require(begin <= end, "weeks must be specified in ascending order");
        uint256 size = 1 + end - begin;
        bytes32[] memory arr = new bytes32[](size);
        for (uint256 i = 0; i < size; i++) {
            arr[i] = weekMerkleRoots[begin + i];
        }
        return arr;
    }

    function verifyClaim(
        address liquidityProvider,
        uint256 week,
        uint256 claimedBalance,
        bytes32[] memory merkleProof
    ) public view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(liquidityProvider, claimedBalance));
        return MerkleProof.verify(merkleProof, weekMerkleRoots[week], leaf);
    }

    /**
     * @notice
     * Allows the owner to add funds to the contract as a merkle tree, These tokens will
     * be withdrawn from the sender
     * These will be pulled from the user
     */
    function seedAllocations(
        uint256 week,
        bytes32 _merkleRoot,
        uint256 amount
    ) external onlyOwner {
        require(weekMerkleRoots[week] == bytes32(0), "cannot rewrite merkle root");
        weekMerkleRoots[week] = _merkleRoot;
        rewardToken.safeTransferFrom(msg.sender, address(this), amount);
        emit RewardAdded(address(rewardToken), amount);
    }
}

File 49 of 51 : Ownable.sol
// SPDX-License-Identifier: MIT

// Based on the Ownable library from OpenZeppelin Contracts, altered to reduce runtime gas by dropping
// support for the GSN.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _owner = msg.sender;
        emit OwnershipTransferred(address(0), msg.sender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _require(owner() == msg.sender, Errors.CALLER_IS_NOT_OWNER);
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        _require(newOwner != address(0), Errors.NEW_OWNER_IS_ZERO);
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
}

File 50 of 51 : MerkleProof.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev These functions deal with verification of Merkle trees (hash trees),
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        bytes32 computedHash = leaf;

        for (uint256 i = 0; i < proof.length; i++) {
            bytes32 proofElement = proof[i];

            if (computedHash <= proofElement) {
                // Hash(current computed hash + current element of the proof)
                computedHash = keccak256(abi.encodePacked(computedHash, proofElement));
            } else {
                // Hash(current element of the proof + current computed hash)
                computedHash = keccak256(abi.encodePacked(proofElement, computedHash));
            }
        }

        // Check if the computed hash (root) is equal to the provided root
        return computedHash == root;
    }
}

File 51 of 51 : MerkleOrchard.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/MerkleProof.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol";

import "./interfaces/IDistributorCallback.sol";

pragma solidity ^0.7.0;

contract MerkleOrchard {
    using SafeERC20 for IERC20;

    // Recorded distributions
    // channelId > distributionId
    mapping(bytes32 => uint256) private _nextDistributionId;
    // channelId > distributionId > root
    mapping(bytes32 => mapping(uint256 => bytes32)) private _distributionRoot;
    // channelId > claimer > distributionId / 256 (word index) -> bitmap
    mapping(bytes32 => mapping(address => mapping(uint256 => uint256))) private _claimedBitmap;
    // channelId > balance
    mapping(bytes32 => uint256) private _remainingBalance;

    event DistributionAdded(
        address indexed distributor,
        IERC20 indexed token,
        uint256 distributionId,
        bytes32 merkleRoot,
        uint256 amount
    );
    event DistributionClaimed(
        address indexed distributor,
        IERC20 indexed token,
        uint256 distributionId,
        address indexed claimer,
        address recipient,
        uint256 amount
    );

    IVault private immutable _vault;

    constructor(IVault vault) {
        _vault = vault;
    }

    struct Claim {
        uint256 distributionId;
        uint256 balance;
        address distributor;
        uint256 tokenIndex;
        bytes32[] merkleProof;
    }

    // Getters
    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getDistributionRoot(
        IERC20 token,
        address distributor,
        uint256 distributionId
    ) external view returns (bytes32) {
        bytes32 channelId = _getChannelId(token, distributor);
        return _distributionRoot[channelId][distributionId];
    }

    function getRemainingBalance(IERC20 token, address distributor) external view returns (uint256) {
        bytes32 channelId = _getChannelId(token, distributor);
        return _remainingBalance[channelId];
    }

    /**
     * @notice distribution ids must be sequential and can have an optional offset
     */
    function getNextDistributionId(IERC20 token, address distributor) external view returns (uint256) {
        bytes32 channelId = _getChannelId(token, distributor);
        return _nextDistributionId[channelId];
    }

    function isClaimed(
        IERC20 token,
        address distributor,
        uint256 distributionId,
        address claimer
    ) public view returns (bool) {
        (uint256 distributionWordIndex, uint256 distributionBitIndex) = _getIndices(distributionId);

        bytes32 channelId = _getChannelId(token, distributor);
        return (_claimedBitmap[channelId][claimer][distributionWordIndex] & (1 << distributionBitIndex)) != 0;
    }

    function verifyClaim(
        IERC20 token,
        address distributor,
        uint256 distributionId,
        address claimer,
        uint256 claimedBalance,
        bytes32[] memory merkleProof
    ) external view returns (bool) {
        bytes32 channelId = _getChannelId(token, distributor);
        return _verifyClaim(channelId, distributionId, claimer, claimedBalance, merkleProof);
    }

    // Claim functions

    /**
     * @notice Allows anyone to claim multiple distributions for a claimer.
     */
    function claimDistributions(
        address claimer,
        Claim[] memory claims,
        IERC20[] memory tokens
    ) external {
        _processClaims(claimer, claimer, claims, tokens, false);
    }

    /**
     * @notice Allows a user to claim their own multiple distributions to internal balance.
     */
    function claimDistributionsToInternalBalance(
        address claimer,
        Claim[] memory claims,
        IERC20[] memory tokens
    ) external {
        require(msg.sender == claimer, "user must claim own balance");
        _processClaims(claimer, claimer, claims, tokens, true);
    }

    /**
     * @notice Allows a user to claim their own several distributions to a callback.
     */
    function claimDistributionsWithCallback(
        address claimer,
        Claim[] memory claims,
        IERC20[] memory tokens,
        IDistributorCallback callbackContract,
        bytes calldata callbackData
    ) external {
        require(msg.sender == claimer, "user must claim own balance");
        _processClaims(claimer, address(callbackContract), claims, tokens, true);
        callbackContract.distributorCallback(callbackData);
    }

    /**
     * @notice Allows a distributor to add funds to the contract as a merkle tree.
     */
    function createDistribution(
        IERC20 token,
        bytes32 merkleRoot,
        uint256 amount,
        uint256 distributionId
    ) external {
        address distributor = msg.sender;

        bytes32 channelId = _getChannelId(token, distributor);
        require(
            _nextDistributionId[channelId] == distributionId || _nextDistributionId[channelId] == 0,
            "invalid distribution ID"
        );
        token.safeTransferFrom(distributor, address(this), amount);

        token.approve(address(getVault()), amount);
        IVault.UserBalanceOp[] memory ops = new IVault.UserBalanceOp[](1);

        ops[0] = IVault.UserBalanceOp({
            asset: IAsset(address(token)),
            amount: amount,
            sender: address(this),
            recipient: payable(address(this)),
            kind: IVault.UserBalanceOpKind.DEPOSIT_INTERNAL
        });

        getVault().manageUserBalance(ops);

        _remainingBalance[channelId] += amount;
        _distributionRoot[channelId][distributionId] = merkleRoot;
        _nextDistributionId[channelId] = distributionId + 1;
        emit DistributionAdded(distributor, token, distributionId, merkleRoot, amount);
    }

    // Helper functions

    function _getChannelId(IERC20 token, address distributor) private pure returns (bytes32) {
        return keccak256(abi.encodePacked(token, distributor));
    }

    function _processClaims(
        address claimer,
        address recipient,
        Claim[] memory claims,
        IERC20[] memory tokens,
        bool asInternalBalance
    ) internal {
        uint256[] memory amounts = new uint256[](tokens.length);

        // To save gas when setting claimed statuses in storage, we group claims for each channel and word index
        // (referred to as a 'claims set'), aggregating the claim bits to set and total claimed amount, only committing
        // to storage when changing claims sets (or when processing the last claim).
        // This means that callers should sort claims by grouping distribution channels and distributions with the same
        // word index in order to achieve reduced gas costs.

        // Variables to support claims set aggregation
        bytes32 currentChannelId; // Since channel ids are a hash, the initial zero id can be safely considered invalid
        uint256 currentWordIndex;

        uint256 currentBits; // The accumulated claimed bits to set in storage
        uint256 currentClaimAmount; // The accumulated tokens to be claimed from the current channel (not claims set!)

        Claim memory claim;
        for (uint256 i = 0; i < claims.length; i++) {
            claim = claims[i];

            // New scope to avoid stack-too-deep issues
            {
                (uint256 distributionWordIndex, uint256 distributionBitIndex) = _getIndices(claim.distributionId);

                if (currentChannelId == _getChannelId(tokens[claim.tokenIndex], claim.distributor)) {
                    if (currentWordIndex == distributionWordIndex) {
                        // Same claims set as the previous one: simply track the new bit to set.
                        currentBits |= 1 << distributionBitIndex;
                    } else {
                        // This case is an odd exception: the claims set is not the same, but the channel id is. This
                        // happens for example when there are so many distributions that they don't fit in a single 32
                        // byte bitmap.
                        // Since the channel is the same, we can continue accumulating the claim amount, but must commit
                        // the previous claim bits as they correspond to a different word index.
                        _setClaimedBits(currentChannelId, claimer, currentWordIndex, currentBits);

                        // Start a new claims set, except channel id is the same as the previous one, and amount is not
                        // reset.
                        currentWordIndex = distributionWordIndex;
                        currentBits = 1 << distributionBitIndex;
                    }

                    // Amounts are always accumulated for the same channel id
                    currentClaimAmount += claim.balance;
                } else {
                    // Skip initial invalid claims set
                    if (currentChannelId != bytes32(0)) {
                        // Commit previous claims set
                        _setClaimedBits(currentChannelId, claimer, currentWordIndex, currentBits);
                        _deductClaimedBalance(currentChannelId, currentClaimAmount);
                    }

                    // Start a new claims set
                    currentChannelId = _getChannelId(tokens[claim.tokenIndex], claim.distributor);
                    currentWordIndex = distributionWordIndex;
                    currentBits = 1 << distributionBitIndex;
                    currentClaimAmount = claim.balance;
                }
            }

            // Since a claims set is only committed if the next one is not part of the same set, the last claims set
            // must be manually committed always.
            if (i == claims.length - 1) {
                _setClaimedBits(currentChannelId, claimer, currentWordIndex, currentBits);
                _deductClaimedBalance(currentChannelId, currentClaimAmount);
            }

            require(
                _verifyClaim(currentChannelId, claim.distributionId, claimer, claim.balance, claim.merkleProof),
                "incorrect merkle proof"
            );

            // Note that balances to claim are here accumulated *per token*, independent of the distribution channel and
            // claims set accounting.
            amounts[claim.tokenIndex] += claim.balance;

            emit DistributionClaimed(
                claim.distributor,
                tokens[claim.tokenIndex],
                claim.distributionId,
                claimer,
                recipient,
                claim.balance
            );
        }

        IVault.UserBalanceOpKind kind = asInternalBalance
            ? IVault.UserBalanceOpKind.TRANSFER_INTERNAL
            : IVault.UserBalanceOpKind.WITHDRAW_INTERNAL;
        IVault.UserBalanceOp[] memory ops = new IVault.UserBalanceOp[](tokens.length);

        for (uint256 i = 0; i < tokens.length; i++) {
            ops[i] = IVault.UserBalanceOp({
                asset: IAsset(address(tokens[i])),
                amount: amounts[i],
                sender: address(this),
                recipient: payable(recipient),
                kind: kind
            });
        }
        getVault().manageUserBalance(ops);
    }

    /**
     * @dev Sets the bits set in `newClaimsBitmap` for the corresponding distribution.
     */
    function _setClaimedBits(
        bytes32 channelId,
        address claimer,
        uint256 wordIndex,
        uint256 newClaimsBitmap
    ) private {
        uint256 currentBitmap = _claimedBitmap[channelId][claimer][wordIndex];

        // All newly set bits must not have been previously set
        require((newClaimsBitmap & currentBitmap) == 0, "cannot claim twice");

        _claimedBitmap[channelId][claimer][wordIndex] = currentBitmap | newClaimsBitmap;
    }

    /**
     * @dev Deducts `balanceBeingClaimed` from a distribution channel's allocation. This isolates tokens accross
     * distribution channels, and prevents claims for one channel from using the tokens of another one.
     */
    function _deductClaimedBalance(bytes32 channelId, uint256 balanceBeingClaimed) private {
        require(
            _remainingBalance[channelId] >= balanceBeingClaimed,
            "distributor hasn't provided sufficient tokens for claim"
        );
        _remainingBalance[channelId] -= balanceBeingClaimed;
    }

    function _verifyClaim(
        bytes32 channelId,
        uint256 distributionId,
        address claimer,
        uint256 claimedBalance,
        bytes32[] memory merkleProof
    ) internal view returns (bool) {
        bytes32 leaf = keccak256(abi.encodePacked(claimer, claimedBalance));
        return MerkleProof.verify(merkleProof, _distributionRoot[channelId][distributionId], leaf);
    }

    function _getIndices(uint256 distributionId)
        private
        pure
        returns (uint256 distributionWordIndex, uint256 distributionBitIndex)
    {
        distributionWordIndex = distributionId / 256;
        distributionBitIndex = distributionId % 256;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 9999
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"distributor","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"distributionId","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DistributionAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"distributor","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"distributionId","type":"uint256"},{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DistributionClaimed","type":"event"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"components":[{"internalType":"uint256","name":"distributionId","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"tokenIndex","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleOrchard.Claim[]","name":"claims","type":"tuple[]"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"name":"claimDistributions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"components":[{"internalType":"uint256","name":"distributionId","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"tokenIndex","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleOrchard.Claim[]","name":"claims","type":"tuple[]"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"name":"claimDistributionsToInternalBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"components":[{"internalType":"uint256","name":"distributionId","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"tokenIndex","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"internalType":"struct MerkleOrchard.Claim[]","name":"claims","type":"tuple[]"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"contract IDistributorCallback","name":"callbackContract","type":"address"},{"internalType":"bytes","name":"callbackData","type":"bytes"}],"name":"claimDistributionsWithCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"distributionId","type":"uint256"}],"name":"createDistribution","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"distributionId","type":"uint256"}],"name":"getDistributionRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"distributor","type":"address"}],"name":"getNextDistributionId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"distributor","type":"address"}],"name":"getRemainingBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"distributionId","type":"uint256"},{"internalType":"address","name":"claimer","type":"address"}],"name":"isClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"distributor","type":"address"},{"internalType":"uint256","name":"distributionId","type":"uint256"},{"internalType":"address","name":"claimer","type":"address"},{"internalType":"uint256","name":"claimedBalance","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"verifyClaim","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"}]

60a060405234801561001057600080fd5b5060405161198738038061198783398101604081905261002f91610044565b60601b6001600160601b031916608052610072565b600060208284031215610055578081fd5b81516001600160a01b038116811461006b578182fd5b9392505050565b60805160601c6118f861008f600039806102dc52506118f86000f3fe608060405234801561001057600080fd5b50600436106100be5760003560e01c80638d928af811610076578063ece123541161005b578063ece123541461016f578063fb97812814610182578063fea7364914610195576100be565b80638d928af814610147578063a68d1e9d1461015c576100be565b806362c8b7c9116100a757806362c8b7c91461010157806381ae8541146101145780638bf3e45714610134576100be565b80632b630140146100c3578063515ac052146100d8575b600080fd5b6100d66100d136600461119d565b6101a8565b005b6100eb6100e636600461138a565b6101bb565b6040516100f89190611659565b60405180910390f35b6100eb61010f3660046113dc565b610226565b610127610122366004611312565b61024e565b6040516100f89190611664565b6100d661014236600461119d565b610274565b61014f6102da565b6040516100f891906116ba565b6100d661016a366004611210565b6102fe565b6100d661017d366004611461565b6103e9565b610127610190366004611312565b6106a2565b6101276101a336600461134a565b6106c6565b6101b68384848460006106f7565b505050565b60008060006101c985610b23565b9150915060006101d98888610b31565b600090815260026020908152604080832073ffffffffffffffffffffffffffffffffffffffff8916845282528083209583529490529290922054600190911b161515915050949350505050565b6000806102338888610b31565b90506102428187878787610b64565b98975050505050505050565b60008061025b8484610b31565b6000908152600360205260409020549150505b92915050565b3373ffffffffffffffffffffffffffffffffffffffff8416146102cc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c3906117dd565b60405180910390fd5b6101b68384848460016106f7565b7f000000000000000000000000000000000000000000000000000000000000000090565b3373ffffffffffffffffffffffffffffffffffffffff87161461034d576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c3906117dd565b61035b8684878760016106f7565b6040517f55c524c100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8416906355c524c1906103af908590859060040161166d565b600060405180830381600087803b1580156103c957600080fd5b505af11580156103dd573d6000803e3d6000fd5b50505050505050505050565b3360006103f68683610b31565b6000818152602081905260409020549091508314806104215750600081815260208190526040902054155b610457576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c3906116db565b61047973ffffffffffffffffffffffffffffffffffffffff8716833087610bdf565b8573ffffffffffffffffffffffffffffffffffffffff1663095ea7b361049d6102da565b866040518363ffffffff1660e01b81526004016104bb92919061159c565b602060405180830381600087803b1580156104d557600080fd5b505af11580156104e9573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061050d91906112eb565b50604080516001808252818301909252606091816020015b61052d610f61565b8152602001906001900390816105255750506040805160a081018252600080825273ffffffffffffffffffffffffffffffffffffffff8b1660208301529181018890523060608201819052608082015282519293509183919061058c57fe5b602002602001018190525061059f6102da565b73ffffffffffffffffffffffffffffffffffffffff16630e8e3e84826040518263ffffffff1660e01b81526004016105d791906115c2565b600060405180830381600087803b1580156105f157600080fd5b505af1158015610605573d6000803e3d6000fd5b505050600083815260036020908152604080832080548a019055600180835281842089855283528184208b9055868452918390529182902090870190555173ffffffffffffffffffffffffffffffffffffffff808a1692508516907f24a80c4e3ef74c732b163bfb2decfbe077a51aef3b708c93f8ef3dd06fc3ea7c906106919088908b908b90611840565b60405180910390a350505050505050565b6000806106af8484610b31565b600090815260208190526040902054949350505050565b6000806106d38585610b31565b60009081526001602090815260408083208684529091529020549150509392505050565b6060825167ffffffffffffffff8111801561071157600080fd5b5060405190808252806020026020018201604052801561073b578160200160208202803683370190505b50905060008060008061074c610f91565b60005b89518110156109715789818151811061076457fe5b6020026020010151915060008061077e8460000151610b23565b915091506107a78b85606001518151811061079557fe5b60200260200101518560400151610b31565b8814156107e957818714156107c457806001901b861795506107db565b6107d0888f8989610c88565b819650806001901b95505b83602001518501945061082c565b8715610805576107fb888f8989610c88565b6108058886610d3c565b6108188b85606001518151811061079557fe5b9750819650806001901b9550836020015194505b505060018a510381141561085057610846868d8787610c88565b6108508684610d3c565b6108698683600001518e85602001518660800151610b64565b61089f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c3906117a6565b8160200151878360600151815181106108b457fe5b6020026020010181815101915081815250508b73ffffffffffffffffffffffffffffffffffffffff16898360600151815181106108ed57fe5b602002602001015173ffffffffffffffffffffffffffffffffffffffff16836040015173ffffffffffffffffffffffffffffffffffffffff167ff3f33f2319d28d6a1402aa9e6ca0ae16d3ada035d576b3b8074b422aaa03b69885600001518f876020015160405161096193929190611814565b60405180910390a460010161074f565b50600087610980576001610983565b60025b90506060895167ffffffffffffffff8111801561099f57600080fd5b506040519080825280602002602001820160405280156109d957816020015b6109c6610f61565b8152602001906001900390816109be5790505b50905060005b8a51811015610aa1576040518060a001604052808460038111156109ff57fe5b81526020018c8381518110610a1057fe5b602002602001015173ffffffffffffffffffffffffffffffffffffffff1681526020018a8381518110610a3f57fe5b602002602001015181526020013073ffffffffffffffffffffffffffffffffffffffff1681526020018e73ffffffffffffffffffffffffffffffffffffffff16815250828281518110610a8e57fe5b60209081029190910101526001016109df565b50610aaa6102da565b73ffffffffffffffffffffffffffffffffffffffff16630e8e3e84826040518263ffffffff1660e01b8152600401610ae291906115c2565b600060405180830381600087803b158015610afc57600080fd5b505af1158015610b10573d6000803e3d6000fd5b5050505050505050505050505050505050565b61010081049160ff90911690565b60008282604051602001610b46929190611531565b60405160208183030381529060405280519060200120905092915050565b6000808484604051602001610b7a9291906114b5565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0818403018152918152815160209283012060008a8152600184528281208a8252909352912054909150610bd490849083610d9d565b979650505050505050565b610c82846323b872dd60e01b858585604051602401610c009392919061156b565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152610e3a565b50505050565b600084815260026020908152604080832073ffffffffffffffffffffffffffffffffffffffff87168452825280832085845290915290205481811615610cfa576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c390611712565b600094855260026020908152604080872073ffffffffffffffffffffffffffffffffffffffff9096168752948152848620938652929092529190922091179055565b600082815260036020526040902054811115610d84576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016102c390611749565b6000918252600360205260409091208054919091039055565b600081815b8551811015610e2f576000868281518110610db957fe5b60200260200101519050808311610dfa578281604051602001610ddd9291906114ea565b604051602081830303815290604052805190602001209250610e26565b8083604051602001610e0d9291906114ea565b6040516020818303038152906040528051906020012092505b50600101610da2565b509092149392505050565b600060608373ffffffffffffffffffffffffffffffffffffffff1683604051610e6391906114f8565b6000604051808303816000865af19150503d8060008114610ea0576040519150601f19603f3d011682016040523d82523d6000602084013e610ea5565b606091505b50915091506000821415610ebd573d6000803e3d6000fd5b610c82815160001480610edf575081806020019051810190610edf91906112eb565b6101a281610ef057610ef081610ef4565b5050565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6040805160a081019091528060008152600060208201819052604082018190526060820181905260809091015290565b6040518060a001604052806000815260200160008152602001600073ffffffffffffffffffffffffffffffffffffffff16815260200160008152602001606081525090565b803561026e8161189d565b600082601f830112610ff1578081fd5b8135611004610fff8261187d565b611856565b81815291506020808301908481018184028601820187101561102557600080fd5b60005b8481101561104457813584529282019290820190600101611028565b505050505092915050565b600082601f83011261105f578081fd5b813561106d610fff8261187d565b81815291506020808301908481018184028601820187101561108e57600080fd5b60005b848110156110445781356110a48161189d565b84529282019290820190600101611091565b600082601f8301126110c6578081fd5b81356110d4610fff8261187d565b818152915060208083019084810160005b84811015611044578135870160a0807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0838c0301121561112457600080fd5b61112d81611856565b85830135815260408084013587830152606061114b8d828701610fd6565b828401526080915081850135818401525082840135925067ffffffffffffffff83111561117757600080fd5b6111858c8885870101610fe1565b908201528652505092820192908201906001016110e5565b6000806000606084860312156111b1578283fd5b83356111bc8161189d565b9250602084013567ffffffffffffffff808211156111d8578384fd5b6111e4878388016110b6565b935060408601359150808211156111f9578283fd5b506112068682870161104f565b9150509250925092565b60008060008060008060a08789031215611228578182fd5b86356112338161189d565b9550602087013567ffffffffffffffff8082111561124f578384fd5b61125b8a838b016110b6565b96506040890135915080821115611270578384fd5b61127c8a838b0161104f565b95506060890135915061128e8261189d565b909350608088013590808211156112a3578384fd5b818901915089601f8301126112b6578384fd5b8135818111156112c4578485fd5b8a60208285010111156112d5578485fd5b6020830194508093505050509295509295509295565b6000602082840312156112fc578081fd5b8151801515811461130b578182fd5b9392505050565b60008060408385031215611324578182fd5b823561132f8161189d565b9150602083013561133f8161189d565b809150509250929050565b60008060006060848603121561135e578283fd5b83356113698161189d565b925060208401356113798161189d565b929592945050506040919091013590565b6000806000806080858703121561139f578384fd5b84356113aa8161189d565b935060208501356113ba8161189d565b92506040850135915060608501356113d18161189d565b939692955090935050565b60008060008060008060c087890312156113f4578182fd5b86356113ff8161189d565b9550602087013561140f8161189d565b94506040870135935060608701356114268161189d565b92506080870135915060a087013567ffffffffffffffff811115611448578182fd5b61145489828a01610fe1565b9150509295509295509295565b60008060008060808587031215611476578182fd5b84356114818161189d565b966020860135965060408601359560600135945092505050565b73ffffffffffffffffffffffffffffffffffffffff169052565b60609290921b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000168252601482015260340190565b918252602082015260400190565b60008251815b8181101561151857602081860181015185830152016114fe565b818111156115265782828501525b509190910192915050565b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000606093841b811682529190921b16601482015260280190565b73ffffffffffffffffffffffffffffffffffffffff9384168152919092166020820152604081019190915260600190565b73ffffffffffffffffffffffffffffffffffffffff929092168252602082015260400190565b602080825282518282018190526000919060409081850190868401855b8281101561164c5781518051600481106115f557fe5b8552808701516116078887018261149b565b5085810151868601526060808201516116228288018261149b565b5050608090810151906116378682018361149b565b505060a09390930192908501906001016115df565b5091979650505050505050565b901515815260200190565b90815260200190565b60006020825282602083015282846040840137818301604090810191909152601f9092017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160101919050565b73ffffffffffffffffffffffffffffffffffffffff91909116815260200190565b60208082526017908201527f696e76616c696420646973747269627574696f6e204944000000000000000000604082015260600190565b60208082526012908201527f63616e6e6f7420636c61696d2074776963650000000000000000000000000000604082015260600190565b60208082526037908201527f6469737472696275746f72206861736e27742070726f7669646564207375666660408201527f696369656e7420746f6b656e7320666f7220636c61696d000000000000000000606082015260800190565b60208082526016908201527f696e636f7272656374206d65726b6c652070726f6f6600000000000000000000604082015260600190565b6020808252601b908201527f75736572206d75737420636c61696d206f776e2062616c616e63650000000000604082015260600190565b92835273ffffffffffffffffffffffffffffffffffffffff919091166020830152604082015260600190565b9283526020830191909152604082015260600190565b60405181810167ffffffffffffffff8111828210171561187557600080fd5b604052919050565b600067ffffffffffffffff821115611893578081fd5b5060209081020190565b73ffffffffffffffffffffffffffffffffffffffff811681146118bf57600080fd5b5056fea2646970667358221220f9a8e75dc6691ffb23712d46d1514f8655d6e950a762ea801145aba797c431b064736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8

-----Decoded View---------------
Arg [0] : vault (address): 0xba12222222228d8ba445958a75a0704d566bf2c8

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8


Block Transaction Difficulty Gas Used Reward
Block Uncle Number Difficulty Gas Used Reward
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.